Welcome!

Microservices Expo Authors: Elizabeth White, Liz McMillan, Astadia CloudGPS, Jason Bloomberg, Pat Romanski

Related Topics: Java IoT, Microservices Expo

Java IoT: Article

Component Development and Assembly Using OSGi Services

Using components to build software systems will provide many architectural advantages apart from promoting ease of reuse

This article introduces the concepts of Component Oriented Development and Assembly (CODA) using the OSGi Service platform with an example application. The article starts with an introduction to software components, elaborates with an example application, followed by an overview of the OSGi Service platform, and an implementation of the example application using this platform.

Introduction to Software Components
Components are parts that can be assembled to form a larger system. Electronic components such as ICs (Integrated Circuits) are assembled together to build an electronic system; similarly software components are assembled together to build a software system. Software systems have a static form as well as a dynamic runtime form. Software components can be assembled either in static form or dynamic form. In either case, the software component is an independent unit of development, deployment, and assembly. Using components to build software systems will provide many architectural advantages apart from promoting ease of reuse.

Age Calculation - An Example Application
Consider an application meant for calculating the age of people. Assume this application prompts the user to provide her personal details such as name and date of birth. Once the user provides the details, the application calculates the age of the person as of today and displays it with a personal greeting. Such an application can be built from the following software components:

  • UserProfile Component: Responsible for collecting the personal details of the user such as name and date of birth
  • Age Component: Responsible for calculating the age, given the date of birth
  • Greeting Component: Responsible for displaying the greeting message along with age of the person; needs to make use of the UserProfile component to obtain input from the user and Age component to calculate the age
  • AgeCalculationApp Component: Responsible for invoking the Greeting service provided by Greeting component

The components can be represented in a UML component diagram as shown in Figure 1. The dotted arrow lines in the diagram denote dependency.

Figure 1: Components in the Age Calculation application

Interfaces of Software Components
A software interface is a collection of software operations. Software components interact with one another by invoking the software operations. To facilitate structured interactions across components, each component exposes one or more software interfaces through which other components can interact. The exposed interfaces of a component are called as its "provided interfaces." Internals of the component implement the service contracts exposed by the provided interfaces.

Apart from providing services, a component needs to consume services provided by other components. The set of services that a component wants to consume is specified through "required interfaces". A component can work with any other component that provides the required interfaces. Hence there is no tight coupling between one component and another; the dependency of a component is only with interfaces and not with other components.

Interfaces in the Age Calculation Application
Let us identify the interfaces provided and required by each of the four components in the Age Calculation application.

Age Component
The Age component is responsible for calculating the age, given the date of birth. Hence it needs to provide a service for calculating the age. Let's expose this service through a provided interface IAgeCalculation. The Java code for this interface is given in Figure 2.

Figure 2: AgeCalculation Java interface code

In the IAgeCalculation interface definition, Calendar is a data type defined in java.util package to represent the date. IAge is a custom-defined data type to hold the age. The Java code for IAge is shown in Figure 3.

Figure 3: Java code for data type IAge

The Age Component can be represented in a UML component diagram as shown in Figure 4. The lollipop connector from the component denotes provided interface.

Figure 4: UML representation of Age component

UserProfile Component
The UserProfile component is responsible for collecting the personal information from end user and passing it back to the consuming component. Let us define an interface called as IUserProfileCollection to expose this service. The Java code for this interface is shown in Figure 5.

Figure 5: Java code for IUserProfileCollection interface

When the method collectUserProfile() is called, the component starts an interactive session with the end user to collect her personal information. During the user interaction session, the method isProfileCollected() will return false; after the user interaction session has finished and the user profile has been collected, this method will return true. At this time, the user profile is ready for pick-up by the consuming component and it can do so by invoking giveUserProfile() method.

giveUserProfile() method returns the user profile information through a custom defined data type IUserProfile. Java code for IUserProfile data type is given in Figure 6.

Figure 6: Java code for IUserProfile data type

The UserProfile component in a UML component diagram notation is shown in Figure 7.

Figure 7: UML representation of UserProfile component

Greeting Component
The Greeting component is responsible for displaying the greeting message along with the age. We'll expose this service through the IGreeting interface. The Java code for IGreeting interface is shown in Figure 8.

Figure 8: Java code for interface IGreeting

The Greeting component provides the IGreeting service, and it requires the IAgeCalculation and IUserProfileCollection services. The required and provided interfaces of the Greeting component can be represented using the UML component diagram as shown in Figure 9. The receptacle sockets in the component diagram denote required interfaces.

Figure 9: UML representation of Greeting component

AgeCalculationApp Component
The AgeCalculationApp component is responsible for invoking the IGreeting service of Greeting component. The AgeCalculationApp itself does not provide any service. The UML diagram for this component is shown in Figure 10.

Figure 10: UML representation of AgeCalculationApp

Application Assembly
Components are assembled together to build a software system. Components for an assembly should be chosen such a way that, amongst the chosen components the set of required interfaces is fulfilled by the set of provided interfaces. The four components of the example application can be assembled to result in Age Calculation application. UML component diagram denoting this assembly is shown in Figure 11. Connectors with a lollipop and a receptacle together show how two components assemble over a common interface (one component provides the interface and another component requires it).

Figure 11: UML representation of Age Calculation application assembly

Once an application is assembled, specific components from the assembly can be replaced with compatible newer components. Let us say we have two new components - GUIUserProfile and GUIGreeting, which have same interfaces as UserProfile and Greeting components, respectively. Then these new components can replace the old components to provide us with a GUI application. The application assembly would then look like Figure 12.

Figure 12: Age Calculation GUI Application Assembly

Introduction to the OSGi Service Platform
OSGi Service is a standards based software development platform. The platform standards are specified by the OSGi Alliance (http://www.osgi.org), formerly known as the Open Services Gateway initiative.  OSGi alliance is an industry backed nonprofit organization.

OSGi platform provides a modularity and component model on top of Java. Figure 13 illustrates how OSGi logically fits in a development / deployment stack.

Figure 13: OSGi From Development / Deployment Perspective

OSGi Framework
At the core of the OSGi platform is the OSGi framework defined by standards. OSGi framework is the runtime environment on which OSGi applications can be executed. OSGi framework specifies a common API using which application developers can develop OSGi applications. The OSGi framework specifications is used by OSGi framework developers also, who build implementations of the framework as per the specifications.

There are a number of framework implementations available from different developers. A few well known framework implementations are listed below:

The functionality of OSGi framework is divided into many layers. For our purposes, we shall focus on Modules Layer and Services Layer.  Figure 14 illustrates the layers we would like to focus.

The modules layer is the bottom most layer interacting with the runtime framework. The modules layer defines a modularity framework on top of standard Java so that modules expose and interact via well-defined APIs. Individual module is called as a "bundle" in OSGi. OSGi bundle is the atomic unit of deployment on an OSGi framework. An OSGi bundle is nothing but a Java Archive (JAR) File with some special manifest information that would be used by the OSGi framework when the bundle is deployed. Unlike a normal JAR file, which exposes all its code when it is deployed on a Java Virtual Machine (JVM), the bundle does not expose all the code contained within. Only code (Java packages) marked for explicit export is exposed outside the bundle.

Figure 14: OSGi Framework Functional Layers

Above the Module layer is the Services layer. An OSGi Service is defined by a Java interface. Any bundle can implement the service, and register the service with the OSGi Service Registry. OSGi Service Registry, defined as part of framework standards, supports a publish, subscribe, and look-up mechanism of exchanging services across components. A bundle can register the service that it has implemented with the OSGi Service Registry. A bundle requiring a service can query the OSGi Service Registry to look-up any registered service implementation. Instead of looking-up, a bundle can also subscribe to be notified on service registration / unregistration events. These mechanisms make the bundles that provide service and bundles that consume service unaware of each other, leading to independent development and deployment of these components. Once deployed, they can be  assembled dynamically using the OSGi Service Registry.

Implementing Age Calculation Using OSGi
The Age Calculation application has one bundle for each of the components. Each bundle has a Java package that is exposed for access from outside and an internal Java package. The exposed package defines the interfaces and the internal package contains implementation classes. The package diagram for all the bundles is shown in Figure 15.

Figure 15: Age Calculation Application bundles

The service provided by each bundle is exposed by using the OSGi Declarative Services framework. Using the same framework, each bundle also specifies the list of services it requires. The OSGi Declarative Services framework (also known as Service Component Runtime), will perform the work of registering the provided service with the OSGi Service Registry and obtaining the required service through look-up into OSGi Service Registry. Thus, the Declarative Services framework provides automatic assembly of deployed components.

As an example, let us consider the Greeting bundle. The Declarative Services specification of the components in this bundle is done through an XML file, which is given in Figure 16.

Figure 16: Greeting component Declarative Service Definition

The XML file contains following metadata about the Greeting component:

  • A component by name com.demo.greeting is defined
  • The component is implemented by the class com.demo.greeting.internal.Greeting
  • The component requires two interfaces - IuserProfileCollection and IAgeCalculation. These required interfaces should be dynamically wired to this component using setUserProfileCollection() and setAgeCalculation() methods on the component implementation class.
  • The component provides a service through the provided interface com.demo.greeting.IGreeting.

To understand how the Greeting component works, some portions of the implementation class is presented in Figure 17. The Greeting class has two field variables referring to the services required by this component. In the component Declarative Service metadata setter methods of these two variables are linked to the service reference (required interface). Hence when the Service Component Runtime (SCR) activates this component, it would call the setter methods to point these variables to objects which provide the service. For example, an instance of AgeCalculator object from Age component would be passed to ageCalculation_ member variable.

Figure 17: Implementation of Greeting component

The Greeting class's  implementation of greet() method obtains the user profile by invoking IUserProfileCollection service. From the obtained profile, date of birth is extracted and IAgeCalculation service is used to calculate the age. Finally the method displays the age along with a greeting to the user.

Output from the Example Application
The Age Calculation application, with console mode user interaction components, has the following output.

osgi> What is your first name?

Albert

What is your last name?

Einstein

What is your title (Mr./Ms./Mrs./Prof./Dr.)?

Mr.

What is your year of birth?

1879

What is your month of birth (1-12)?

03

What is your date of birth (1-31)?

14

Hello Mr. Albert Einstein, you are 132 years, 10 months, and 3 days old.

If we replace the Greeting and UserProfile components in the application assembly with GUIGreeting and GUIUserProfile components, the application output is as below:

The source code of the application can be downloaded as a zip file containing an Eclipse workspace folder. To open the source code and run the application simply unzip the folder and switch the Eclipse workspace to point to the unzipped folder. Choose the appropriate components in the Run Configuration to run either console version or the GUI version of the assembly. For example, for the GUI version, the following run configuration will be applicable:

More Stories By Piram Manickam

Piram Manickam works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By Subrahmanya SV

Subrahmanya SV works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
newuniverse 01/31/12 03:10:00 AM EST

Hi,
This is a very simple and descriptive example. Good job.

@MicroservicesExpo Stories
"I think DevOps is now a rambunctious teenager – it’s starting to get a mind of its own, wanting to get its own things but it still needs some adult supervision," explained Thomas Hooker, VP of marketing at CollabNet, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I will be talking about ChatOps and ChatOps as a way to solve some problems in the DevOps space," explained Himanshu Chhetri, CTO of Addteq, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Your homes and cars can be automated and self-serviced. Why can't your storage? From simply asking questions to analyze and troubleshoot your infrastructure, to provisioning storage with snapshots, recovery and replication, your wildest sci-fi dream has come true. In his session at @DevOpsSummit at 20th Cloud Expo, Dan Florea, Director of Product Management at Tintri, provided a ChatOps demo where you can talk to your storage and manage it from anywhere, through Slack and similar services with...
If you are thinking about moving applications off a mainframe and over to open systems and the cloud, consider these guidelines to prioritize what to move and what to eliminate. On the surface, mainframe architecture seems relatively simple: A centrally located computer processes data through an input/output subsystem and stores its computations in memory. At the other end of the mainframe are printers and terminals that communicate with the mainframe through protocols. For all of its apparen...
SYS-CON Events announced today that Calligo has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Calligo is an innovative cloud service provider offering mid-sized companies the highest levels of data privacy. Calligo offers unparalleled application performance guarantees, commercial flexibility and a personalized support service from its globally located cloud platfor...
Many organizations are now looking to DevOps maturity models to gauge their DevOps adoption and compare their maturity to their peers. However, as enterprise organizations rush to adopt DevOps, moving past experimentation to embrace it at scale, they are in danger of falling into the trap that they have fallen into time and time again. Unfortunately, we've seen this movie before, and we know how it ends: badly.
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
"At the keynote this morning we spoke about the value proposition of Nutanix, of having a DevOps culture and a mindset, and the business outcomes of achieving agility and scale, which everybody here is trying to accomplish," noted Mark Lavi, DevOps Solution Architect at Nutanix, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
From personal care products to groceries and movies on demand, cloud-based subscriptions are fulfilling the needs of consumers across an array of market sectors. Nowhere is this shift to subscription services more evident than in the technology sector. By adopting an Everything-as-a-Service (XaaS) delivery model, companies are able to tailor their computing environments to shape the experiences they want for customers as well as their workforce.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
If you read a lot of business and technology publications, you might think public clouds are universally preferred over all other cloud options. To be sure, the numbers posted by Amazon Web Services (AWS) and Microsoft’s Azure platform are nothing short of impressive. Statistics reveal that public clouds are growing faster than private clouds and analysts at IDC predict that public cloud growth will be 3 times that of private clouds by 2019.
"DivvyCloud as a company set out to help customers automate solutions to the most common cloud problems," noted Jeremy Snyder, VP of Business Development at DivvyCloud, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"We focus on SAP workloads because they are among the most powerful but somewhat challenging workloads out there to take into public cloud," explained Swen Conrad, CEO of Ocean9, Inc., in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"As we've gone out into the public cloud we've seen that over time we may have lost a few things - we've lost control, we've given up cost to a certain extent, and then security, flexibility," explained Steve Conner, VP of Sales at Cloudistics,in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Peak 10 is a hybrid infrastructure provider across the nation. We are in the thick of things when it comes to hybrid IT," explained , Chief Technology Officer at Peak 10, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
For over a decade, Application Programming Interface or APIs have been used to exchange data between multiple platforms. From social media to news and media sites, most websites depend on APIs to provide a dynamic and real-time digital experience. APIs have made its way into almost every device and service available today and it continues to spur innovations in every field of technology. There are multiple programming languages used to build and run applications in the online world. And just li...
Data reduction delivers compelling cost reduction that substantially improves the business case in every cloud deployment model. No matter which cloud approach you choose, the cost savings benefits from data reduction should not be ignored and must be a component of your cloud strategy. IT professionals are finding that the future of IT infrastructure lies in the cloud. Data reduction technologies enable clouds — public, private, and hybrid — to deliver business agility and elasticity at the lo...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.