Welcome!

Microservices Expo Authors: Automic Blog, Elizabeth White, Dalibor Siroky, XebiaLabs Blog, John Katrick

Related Topics: Java IoT, Microservices Expo

Java IoT: Article

Patterns for Building High Performance Applications

Finding the right approach

Performance is one word that is used to describe multiple scenarios when talking about application performance. When someone says I need a High Performance Application, it might mean any/all of the following:

  • Low web latency application ( meaning low page loading times)
  • Application that can serve ever increasing number of users (scalability)
  • Application that does not go down (either highly available or continuously available)

For each of the above, as an architect you need to dig deeper to find out what the user is asking for. With the advent of cloud, every CIO is looking to build applications that meet all of the above scenarios. With the advent of elastic compute, one tends to think that by throwing hardware to the application, we may be able to achieve all of the above objectives.

The patterns employed to achieve the above scenarios at times are different and it is important to find the right approach to the solution that meets the above objectives. We will examine some of the common patterns that can help us to achieve the objectives

Latency Contributors

  • Application Tier ing – One of the biggest contributors to the latency is the application tier ing. The hops from WebServer -> Application Server -> Database and back, data serialization/deserialization are some of the biggest contributor to the overall latency. Having Web and Application tier within the same box or even within same JVM can help reduce the network latency factor. One can have logical separation in the application code between Web Tier and Application Tier but need not have physical separation. Using Spring Container that has Web/App tier can help achieve the same. If the application is making use of SOA and making multiple web services or JMS message calls, network latency and serialization of data once again adds to the latency. Solutions like IBM Datapower XML Accelerators can be used to reduce the XML overheads. Similarly, the application can use Solace Message Router’s to speed up the messaging.

  • Bring Data closer to Application – Data needs to be close to the application so that making all those Database connection calls and getting data from DB can be reduced. Application can cache data to reduce the calls to DB. One can also use cache servers like memcached / ehCache to cache data at the Web/application Tier. Web Tier can cache data like static HTML fragments/images/javascript/CSS files. Application Tier can cache non-transactional data (like lookup maps). OR Mapping tools like Hibernate also support data caching. If it is an Internet Web Application, one can also make use of CDN (content delivery networks)/ Edge Networks (like Akamai) to speed up the delivery of static content.

  • Disk I/O – Another weak link in the application performance chain is Disk I/O. One way to overcome the limitations with regards to the Disk I/O is too keep data in memory. In Memory databases (like Volt DB or Solid DB or Oracle TimesTen), XTP solutions (like Oracle coherence, IBM eXtreme Scale, GigaSpaces eXtreme Application Platform) can used to speed up the application performance.

  • Parallelization of Tasks - The request for the service can be broken down into smaller tasks that can be executed in parallel and their results can be combined together to weave back the complete request. Techniques like - Partition the system by functionality that independently compute and process the request, Map Reduce available via OSS software like Hadoop, CouchDB etc allows the job to broken down to smaller chucks and results are combined together for the final response, Programming languages (Scala,  ERLang, Ada etc) support language constructs for concurrency,  Concurrency libraries like Akka ( based on Actor model) for Java, newer API available from Java 1.5 (ExecutorService)

  • Hardware/Network Configuration
    • Optimized Hardware – The hardware on which application is hosted can also be tuned to reduce latency. Optimization s like 10G/20G network, fiber channels, low latency switches, SSD (Solid State Drives), not using virtualization can make sure the application latency is reduced.
    • Transport Mechanism – At times, the transport mechanism can also add to the application latency. E.g. secure communication (like https) can add to the latency with the additional overhead of deciphering the data at the receiving end. One way is to offload the SSL at the Load Balancer/Firewall.

In the end, you need to measure anything and everything to address the bottlenecks. Once the obvious bottlenecks have been addressed, one can start looking at things like – cache thrashing, poor algorithms, data bloating, wrong dimensioning etc to squeeze out that ounce of performance. All the techniques mentioned may not be applicable in all scenarios’, the architect needs to take a call based on the latency requirements.

Application Scalability – Scalability means ability of an application to handle growing amount of data and concurrency in an efficient manner without impacting performance. Important thing to notice is scalability should not be at the cost of application performance. Some of the techniques that can help scale the application

  • Stateless Application/Service – The application should store its state in some centralized repository, but the application itself should be stateless. It means no storing of data or state on local file systems. Stateless application allows one to add any number of application instances to accommodate the increasing growth. But soon, the centralized repository starts becoming the bottleneck. With ever increasing data, repositories like (RDBMS) may start buckling down. One approach to this issue is to minimize mutable state in the database. To handle such scenarios, techniques like data sharding need to be applied. Another approach to managing write contention in the database is to look at the possibility of using NoSQL data stores for some or all of the application data.

  • Load Balancing – As the traffic starts going up, the application can handle the additional load by adding additional server instances to service the requests. The load balancer will make sure none of the servers are working beyond their stated load and new instance should be automatically added as and when the load goes up (auto scaling). One can also add load balance to database with techniques like Master-Master topology or Master-Slave(with partitioning read and write data) to handle the additional load. But if the data is going in Petabytes ranges, data sharding with data replication techniques need to be used. The in-memory data grid architecture can also be utilized to scale the data.

  • Fault Tolerance / Dynamic Discoverable Elements – When dealing with application that is running in large clusters, it is very important to avoid manual interventions. E.g. when the application load reaches a defined load, the application monitoring should be able to add a new instance and load balancer should be able to recognize the same to utilize it. Similarly, when data gets shard, the applications should be able to recognize and look up the new IP to connect. Similarly, if the application is not able to connect to particular resource, the application should be intelligent enough to recognize the fault and try accessing the alternate resource availability. The application will need to have a central meta data repository for all such fault tolerance scenarios that can be tapped by the application.

Application availability – Availability of an application is very much a function of scalability. Following factors have an impact on the application availability

  • Redundancy – The application needs to be scalable to be able to compensate for the loss of any instance (whether hardware or software). The redundancy needs to be build at all layers, Software, Hardware, Power and even at data center levels. Even if the data center goes, the user should be able to access the application. Many at times, the level of redundancy and down time is a factor of how money is being thrown at the solution. Remember some problems have no solutions within the context of today’s technology. E.g. real time data mirroring or data sync across data centers that are located geographically apart.

  • Fault Tolerance – The application needs to be fault tolerant (e.g. retry mechanism) to make sure it can take advantage of dynamically allocated resources to keep functioning. Having a centralized meta data repository that has information of newly allocated / alternate resources when scaling the application infrastructure.
  • Monitoring/Testing – Another overlooked factor of application availability is application monitoring. If application is not properly monitored, outages can go undetected leading to application unavailability. Ability to monitor the entire application stack and take corrective actions is very important. This capability is build over a period of time. Once the application has monitoring, auto-scaling features, testing to make sure they work is also important. Something like Chaos Monkey used by Netflix is very helpful.

  • Configuration Data – Any application that needs to be continuously available needs to be able to run using configuration. E.g. if the application introduces the new service interface, the application should have the ability to either make use of the new interface or keep using the old one. This factor becomes very important when rolling out new features/services and all of them cannot be rolled out at once.

All the techniques mentioned above can be employed at various levels to build high performance applications.

More Stories By Tech Spot

Founded in 2005, Tech Spot has grown into a leading source of information on Cloud Computing, Big Data, DevOps, Internet of Things and Microservices.

Bloggers - Munish K Gupta, Aravind Ajad Yarra

@MicroservicesExpo Stories
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
Many enterprise and government IT organizations are realizing the benefits of cloud computing by extending IT delivery and management processes across private and public cloud services. But they are often challenged with balancing the need for centralized cloud governance without stifling user-driven innovation. This strategy requires an approach that fundamentally reshapes how IT is delivered today, shifting the focus from infrastructure to services aggregation, and mixing and matching the bes...
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
While we understand Agile as a means to accelerate innovation, manage uncertainty and cope with ambiguity, many are inclined to think that it conflicts with the objectives of traditional engineering projects, such as building a highway, skyscraper or power plant. These are plan-driven and predictive projects that seek to avoid any uncertainty. This type of thinking, however, is short-sighted. Agile approaches are valuable in controlling uncertainty because they constrain the complexity that ste...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
DevOps teams have more on their plate than ever. As infrastructure needs grow, so does the time required to ensure that everything's running smoothly. This makes automation crucial - especially in the server and network monitoring world. Server monitoring tools can save teams time by automating server management and providing real-time performance updates. As budgets reset for the New Year, there is no better time to implement a new server monitoring tool (or re-evaluate your current solution)....
We just came off of a review of a product that handles both containers and virtual machines in the same interface. Under the covers, implementation of containers defaults to LXC, though recently Docker support was added. When reading online, or searching for information, increasingly we see “Container Management” products listed as competitors to Docker, when in reality things like Rocket, LXC/LXD, and Virtualization are Dockers competitors. After doing some looking around, we have decided tha...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The benefits of automation are well documented; it increases productivity, cuts cost and minimizes errors. It eliminates repetitive manual tasks, freeing us up to be more innovative. By that logic, surely, we should automate everything possible, right? So, is attempting to automate everything a sensible - even feasible - goal? In a word: no. Consider this your short guide as to what to automate and what not to automate.
identify the sources of event storms and performance anomalies will require automated, real-time root-cause analysis. I think Enterprise Management Associates said it well: “The data and metrics collected at instrumentation points across the application ecosystem are essential to performance monitoring and root cause analysis. However, analytics capable of transforming data and metrics into an application-focused report or dashboards are what separates actual application monitoring from relat...