Welcome!

Microservices Expo Authors: Kelly Burford, Derek Weeks, Elizabeth White, Liz McMillan, John Katrick

Related Topics: Microservices Expo

Microservices Expo: News Item

Where Is the SOA in REST-Based SOA?

We must pare down the essentials of both REST and SOA to understand the true nature of the combined approach.

Over the years, updating our Licensed ZapThink Architect (LZA) course has given us ample time to explore advances in SOA and Cloud Computing. Now that we’re working on version 9 of the course, we’re taking a closer look at REST-based SOA. Of course, ZapThink has discussed REST for several years now, but recently we’ve seen some fascinating REST-based SOA case studies, both at startups as well as within the US Federal Government.

Nevertheless, while many architects believe that as an architectural style, REST is simpler and more straightforward that Web Services-based SOA, our research is turning up continued confusion over the principles of REST and how best to implement them. Everybody seems to get the basics—operate on resources at URIs with the four HTTP-centric operations GET, POST, PUT, and DELETE—but most people seem to miss the subtleties. Combine that confusion with the fact that you can do REST without SOA, the specifics of REST-based SOA are even more elusive, as we must pare down the essentials of both REST and SOA to understand the true nature of the combined approach. How, therefore, should we handle Service abstractions, contracts, and compositions – arguably, the essence of SOA – in a REST-based SOA world?

Where is the Service Abstraction?
At the center of the SOA approach is the notion of a Service abstraction. REST resources are abstractions as well, but resources are abstractions of capabilities or entities on the server, which is not quite the same thing as a Service abstraction. In SOA, the Service abstraction supports Business Services, which represent flexible, business-centric capabilities. A Business Service may abstract multiple Service interfaces, where routing and transformation operations on intermediaries present a loosely coupled façade.

Most RESTafarians, however, don’t think at this level. They are thinking of clients (e.g. browsers) accessing resources at URIs which return representations. A representation is an HTML page, an XML file, a video, etc. The business context is lost in a sea of URI formats and Internet media types.

What RESTafarians often overlook is that the intermediary pattern is actually one of the core architectural constraints of REST. URIs need not point directly to resources; it is perfectly OK for an intermediary to resolve the URI into a physical endpoint. After all, that’s what DNS servers do!

From the SOA perspective, we can rely upon the intermediary to execute routing rules and transformations as necessary to support the business abstraction. Furthermore, we can establish and enforce the policy (as a part of our SOA governance framework) that the only allowed way to access resources is via endpoints on an intermediary. From the REST perspective, think DNS server on steroids: instead of simply resolving URLs to IP addresses, resolve any formal URI structure to physical resource endpoints by following a rich set of transformation and routing metadata.

Where is the Contract?
At the technical level, a Service is a contracted interface or an abstraction of contracted interfaces. Web Services have contracts that comply with WSDL, but there’s no equivalent of WSDL for REST resources. True, resources have uniform interfaces that the four HTTP operations define, but simply knowing you can GET a resource or POST to a resource doesn’t tell you anything about what that resource is supposed to do. Accessing a resource does give you a representation of that resource, however. Representations can comply with standard Internet media types (formerly known as MIME types), but even the media type specification is insufficient to qualify as a contract.

Sun Microsystems tried to promote the Web Application Description Language (WADL) as a RESTafarian alternative to WSDL, but work on WADL has largely petered out now that Sun is part of Oracle. The point to WADL was more to stub out REST resources in Java than to provide an implementation-neutral contract language in any case.

Where, then, is the contract? Let’s look at a simple REST example: the simplest, of course, being the Web itself. Let’s say you are filling in a form on a Web page and then hit submit. Where is the contract?

The form method is POST, and the POST data are the information that you filled into the form. The resource is identified by the form action URL. So far so good. Have you found the contract yet?

In this example, the contract is the Web form itself. The form specifies and constrains the POST data you may input, and specifies the form action, which is a hyperlink to the next resource. You browsed to the page with the Web form by following an earlier link or loading a URL for a resource that returned that Web page as a representation of that resource.

Remember, a REST application is a set of resources that return representations that link to other resources – in other words, hypermedia. One resource returns one or more representations (Web pages, XML files, etc.) that contain links to other resources, and it is those hyperlinks (and their associated metadata) that specify the application behavior.

While a Web page with a form is the simplest and most common example of how to contract POST data, we can generalize that form however we like, depending on what type of client we want to support. For machine-to-machine interactions, for example (that is, when the client is not simply a browser), the first resource may return an XML representation that provides a contracted interface to the client for POSTing to the linked resource. How your resource builds that representation is up to you.

In Web Services-based SOA we store the contract metadata in a centralized registry/repository. In REST-based SOA each resource is responsible for returning contract metadata either for itself or for any resource it hyperlinks to. As a result, we may not able to obtain contracts for resources we’re not (yet) able to access, but on the other hand, we can code our resources to dynamically generate contracts if we wish. In REST-based SOA, therefore, contract changes can be automated, where in Web Services-based SOA, contract change is a complex, manual process that requires rigorous governance.

Where is the Composition?
The third core characteristic of SOA we look for is the ability to compose Services into applications. Such compositions might be orchestrations, when they have a pre-defined flow, or choreographies, when the order of steps in the composition is not determined ahead of time.

A REST application, of course, is an example of a composition of resources. From the SOA perspective, furthermore, a REST application is a workflow – that is, a composition with human steps. We can also consider such compositions to be choreographies, because the order of steps depends upon which links the user clicks. Users may click links in a different order every time they work their way through the application.

The question still remains: how do we create automated orchestrations in the REST world? The answer is simpler than it looks. In REST, everything can be a resource. Therefore, orchestrations can be resources as well. An orchestration resource might return a BPEL representation or a BPMN representation or perhaps a simplified representation of an orchestration that doesn’t have the baggage of either BPEL or BPMN. If anything, establishing a pre-defined orchestration is simpler than a hypermedia composition, because the orchestration logic is static, while with a hypermedia composition, the underlying resource logic may change the composition logic on the fly. Just because we don’t have to fix our application state transitions ahead of time doesn’t mean we’re not allowed to.

The ZapThink Take
Over the more than ten years ZapThink has been writing about SOA, we’ve fought the battle to explain what SOA really was, fighting the deluge of misinformation from profit-seeking vendors and ill-informed industry analysts. Fortunately, this time vendors aren’t trying to coopt REST to sell software the way they did SOA, to be sure, but the fact still remains that there is extensive confusion and misinformation about REST, just as there still is for SOA.

Mix the two together, therefore, and you’re just asking for trouble. But the effort is worth the trouble, for one simple fact: done right, REST-based SOA actually works. It paves a path to the agile architecture that we’ve been seeking since we first dipped our toe into the ocean of distributed computing. Of course, there’s a catch: the “done right” bit. The devil is in the details.

ZapThink will be providing far more detail on this topic over the next year, in our ZapFlash newsletters, in the next version of our LZA course, and in our Podcasts and at our events. Our new REST-based SOA module in the LZA course in particular breaks new ground and lays the groundwork for simpler, more successful approaches to SOA. Hope to see you at one of our events or classes soon!

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@MicroservicesExpo Stories
Some journey to cloud on a mission, others, a deadline. Change management is useful when migrating to public, private or hybrid cloud environments in either case. For most, stakeholder engagement peaks during the planning and post migration phases of a project. Legacy engagements are fairly direct: projects follow a linear progression of activities (the “waterfall” approach) – change managers and application coders work from the same functional and technical requirements. Enablement and develo...
Admiral Calcote - also known as Lee Calcote (@lcalcote) or the Ginger Geek to his friends - gave a presentation entitled Characterizing and Contrasting Container Orchestrators at the 2016 All Day DevOps conference. Okay, he isn't really an admiral - nor does anyone call him that - but he used the title admiral to describe what container orchestrators do, relating it to an admiral directing a fleet of container ships. You could also say that they are like the conductor of an orchestra, directing...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
Gaining visibility in today’s sprawling cloud infrastructure is complex and laborious, involving drilling down into tools offered by various cloud services providers. Enterprise IT organizations need smarter and effective tools at their disposal in order to address this pertinent problem. Gaining a 360 - degree view of the cloud costs requires collection and analysis of the cost data across all cloud infrastructures used inside an enterprise.
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
Our work, both with clients and with tools, has lead us to wonder how it is that organizations are handling compliance issues in the cloud. The big cloud vendors offer compliance for their infrastructure, but the shared responsibility model requires that you take certain steps to meet compliance requirements. Which lead us to start poking around a little more. We wanted to get a picture of what was available, and how it was being used. There is a lot of fluidity in this space, as in all things c...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
The notion of improving operational efficiency is conspicuously absent from the healthcare debate - neither Obamacare nor the newly proposed GOP plan discusses the impact that a step-function improvement in efficiency could have on access to healthcare (through more capacity), quality of healthcare services (through reduced wait times for patients) or cost (through better utilization of scarce, expensive assets).
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task...
For DevOps teams, the concepts behind service-oriented architecture (SOA) are nothing new. A style of software design initially made popular in the 1990s, SOA was an alternative to a monolithic application; essentially a collection of coarse-grained components that communicated with each other. Communication would involve either simple data passing or two or more services coordinating some activity. SOA served as a valid approach to solving many architectural problems faced by businesses, as app...
Many IT organizations have come to learn that leveraging cloud infrastructure is not just unavoidable, it’s one of the most effective paths for IT organizations to become more responsive to business needs. Yet with the cloud comes new challenges, including minimizing downtime, decreasing the cost of operations, and preventing employee burnout to name a few. As companies migrate their processes and procedures to their new reality of a cloud-based infrastructure, an incident management solution...
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
Recent survey done across top 500 fortune companies shows almost 70% of the CIO have either heard about IAC from their infrastructure head or they are on their way to implement IAC. Yet if you look under the hood while some level of automation has been done, most of the infrastructure is still managed in much tradition/legacy way. So, what is Infrastructure as Code? how do you determine if your IT infrastructure is truly automated?
Every few years, a disruptive force comes along that prompts us to reframe our understanding of what something means, or how it works. For years, the notion of what a computer is and how you make one went pretty much unchallenged. Then virtualization came along, followed by cloud computing, and most recently containers. Suddenly the old rules no longer seemed to apply, or at least they didn’t always apply. These disruptors made us reconsider our IT worldview.