Welcome!

Microservices Expo Authors: Liz McMillan, Elizabeth White, Zakia Bouachraoui, Jason Bloomberg, Pat Romanski

Related Topics: Microservices Expo, Industrial IoT

Microservices Expo: Article

The In-Memory Technologies Behind Business Intelligence Software

Understanding the in-memory technologies that are used in Business Intelligence software

If you follow trends in the business intelligence (BI) space, you'll notice that many analysts, independent bloggers and BI vendors talk about in-memory technology.

There are technical differences that separate one in-memory technology from another, some of which are listed on Boris Evelson's blog.

Some of the items on Boris' list are just as applicable to BI technologies that are not in-memory (‘Incremental updates', for example), but there is one item that merits much deeper discussion. Boris calls this characteristic ‘Memory Swapping' and describes it as, What the (BI) vendor's approach is for handling models that are larger than what fits into a single memory space.

Understanding Memory Swapping
The fundamental idea of in-memory BI technology is the ability to perform real-time calculations without having to perform slow disk operations during the execution of a query. For more details on this, visit my article describing how in-memory technology works.

Obviously, in order to perform calculations on data completely in memory, all the relevant data must reside in memory, i.e., in the computer's RAM. So the questions are: 1) how does the data get there? and 2) how long does it stay there?

These are probably the most important aspects of in-memory technology, as they have great implications on the BI solution as a whole.

Pure In-Memory Technology
Pure in-memory technologies are the class of in-memory technologies that load the entire data model into RAM before a single query can be executed by users. An example of a BI product which utilizes such a technology is QlikView.

QlikView's technology is described as "associative technology." That is a fancy way of saying that QlikView uses a simple tabular data model which is stored entirely in memory. For QlikView, much like any other pure in-memory technology, compression is very important. Compressing the data well makes it possible to hold more data inside a fixed amount of RAM

Pure in-memory technologies which do not compress the data they store in memory are usually quite useless for BI. They either handle amounts of data too small to extract interesting information from, or they break too often.

With or without compression, the fact remains that pure in-memory BI solutions become useless when RAM runs out for the entire data model, even if you're only looking to work with limited portions of it at any one time.

Just-In-Time In-Memory Technology
Just-In-Time In-Memory (or JIT In-Memory) technology only loads the portion of the data into RAM required for a particular query, on demand. An example of a BI product which utilizes this type of technology is SiSense.

Note: The term JIT is borrowed from Just-In-Time compilation, which is a method to improve the runtime performance of computer programs.

JIT in-memory technology involves a smart caching engine that loads selected data into RAM and releases it according to usage patterns.

This approach has obvious advantages:

  1. You have access to far more data than can fit in RAM at any one time
  2. It is easier to have a shared cache for multiple users
  3. It is easier to build solutions that are distributed across several machines

However, since JIT In-Memory loads data on demand, an obvious question arises: Won't the disk reads introduce unbearable performance issues?

The answer would be yes, if the data model used is tabular (as they are in RDBMSs such as SQL Server and Oracle, or pure in-memory technologies such as QlikView), but scalable JIT In-Memory solutions rely on a columnar database instead of a tabular database.

This fundamental ability of columnar databases to access only particular fields, or parts of fields, is what makes JIT In-Memory so powerful. In fact, the impact of columnar database technology on in-memory technology is so great, that many confuse the two.

The combination of JIT In-Memory technology and a columnar database structure delivers the performance of pure in-memory BI technology with the scalability of disk-based models, and is thus an ideal technological basis for large-scale and/or rapidly-growing BI data stores.


The ElastiCube Chronicles - Business Intelligence Blog

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

Microservices Articles
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple cloud provider environments. Yet, despite this portability promise, developers may include configuration and application definitions that constrain or even eliminate application portability. In this session we'll describe best practices for "configuration as code" in a Kubernetes environment. We will demonstrate how a properly constructed containerized app can be deployed to both Amazon and Azure ...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
The now mainstream platform changes stemming from the first Internet boom brought many changes but didn’t really change the basic relationship between servers and the applications running on them. In fact, that was sort of the point. In his session at 18th Cloud Expo, Gordon Haff, senior cloud strategy marketing and evangelism manager at Red Hat, will discuss how today’s workloads require a new model and a new platform for development and execution. The platform must handle a wide range of rec...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
If your cloud deployment is on AWS with predictable workloads, Reserved Instances (RIs) can provide your business substantial savings compared to pay-as-you-go, on-demand services alone. Continuous monitoring of cloud usage and active management of Elastic Compute Cloud (EC2), Relational Database Service (RDS) and ElastiCache through RIs will optimize performance. Learn how you can purchase and apply the right Reserved Instances for optimum utilization and increased ROI.
TCP (Transmission Control Protocol) is a common and reliable transmission protocol on the Internet. TCP was introduced in the 70s by Stanford University for US Defense to establish connectivity between distributed systems to maintain a backup of defense information. At the time, TCP was introduced to communicate amongst a selected set of devices for a smaller dataset over shorter distances. As the Internet evolved, however, the number of applications and users, and the types of data accessed and...
Consumer-driven contracts are an essential part of a mature microservice testing portfolio enabling independent service deployments. In this presentation we'll provide an overview of the tools, patterns and pain points we've seen when implementing contract testing in large development organizations.
In his session at 19th Cloud Expo, Claude Remillard, Principal Program Manager in Developer Division at Microsoft, contrasted how his team used config as code and immutable patterns for continuous delivery of microservices and apps to the cloud. He showed how the immutable patterns helps developers do away with most of the complexity of config as code-enabling scenarios such as rollback, zero downtime upgrades with far greater simplicity. He also demoed building immutable pipelines in the cloud ...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...