Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: Microservices Expo, Containers Expo Blog, @CloudExpo

Microservices Expo: Blog Feed Post

SeaMicro: Atom and the Ants

How the meek shall inherit the data center, change the way we build & deploy applications, & kill public cloud virtualization

The tiny ant. Capable of lifting up to 50 times its body weight, an ant is an amazing workhorse with by far the highest “power to weight” ratio of any living creature. Ants are also among the most populous creatures on the planet. They do the most work as well – a bit at a time Ants can move mountains.

Atom chips (and ARM chips too) are the new ants of the data center. They are what power our smartphones, tablets and ever more consumer electronics devices. They are now very fast, but surprisingly thrifty with energy – giving them the highest computing power to energy weight ratio of any microprocessor.

I predict that significantly more than half of new data center compute capacity deployed in 2016 and beyond will be based on Atoms, ARMs and other ultra-low-power processors. These mighty mites will change much about how application architectures will evolve too. Lastly, I seriously believe that the small, low-power server model will eliminate the use of virtualization in a majority of public cloud capacity by 2018. The impact in the enterprise will be initially less significant, and will take longer to play out, but in the end it will be the same result.

So, let’s take a look at this in more detail to see if you agree.

This week I had the great pleasure to spend an hour with Andrew Feldman, CEO and founder of SeaMicro, Inc., one of the emerging leaders in the nascent low-power server market. SeaMicro has had quite a great run of publicity lately, appearing twice in the Wall Street Journal related to their recent launch of their second-generation product – the SM10000-64 based on a new dual-core 1.66 GHz 64-bit Atom chip created by Intel specifically for SeaMicro.

SeaMicro: 512 Cores, 1TB RAM, 10 RU

Note – the rest of this article is based on SeaMicro and their Atom-based servers.  Calxeda is another company in this space, but uses ARM chips instead.

These little beasties, taking up a mere 10 rack units of space (out of 42 in a typical rack), pack an astonishing 256 individual servers (512 cores), 64 SATA or SSD drives, up to 160GB of external network connectivity (16 x 10GigE), and 1.024 TB of DRAM. Further, SeaMicro uses ¼ of the power, ¼ the space and costs a fraction of a similar amount of capacity in a traditional 1U configuration. Internally, the 256 servers are connected by a 1.28 Tbps “3D torus” fabric modeled on the IBM Blue Gene/L supercomputer.

The approach to using low-power processors in a data center environment is detailed in a paper by a group of researchers out of Carnegie Mellon University. In this paper they show that cluster computing using a FAWN (“Fast Array of Wimpy Nodes”) approach, overall, are “substantially more energy efficient than conventional high-performance CPUs” at the same level of performance.

The Meek Shall Inherit The Earth
A single rack of these units would boast 1,024 individual servers (1 CPU per server), 2,048 cores (total of 3,400 GHz of compute), 4.1TB of DRAM, and 256TB of storage using 1TB SATA drives, and communicate at 1.28Tbps at a cost of around half a million dollars (< $500 per server).

$500/server – really? Yup.

Now, let’s briefly consider the power issue. SeaMicro saves power through a couple of key innovations. First, they’re using these low power chips. But CPU power is typically only 1/3 of the load in a traditional server. To get real savings, they had to build custom ASICs and FPGAs to get 90% of the components off of a typical motherboard (which is now the size of a credit card, with 4 of them on each “blade”). Aside from capacitors, each motherboard has only three types of components – the Atom CPU, DRAM, and the SeaMicro ASIC. The result is 75% less power per server. Google has stated that, even at their scale, the cost of electricity to run servers exceeds the cost to buy them. Power and space consumes >75% of data center operating expense. If you save 75% of the cost of electricity and space, these servers pay for themselves – quickly.

If someone just gave you 256 1U traditional servers to run – for free – it would be far more expensive than purchasing and operating the SeaMicro servers.

Think about it.

Why would anybody buy traditional Xeon-based servers for web farms ever again? As the saying goes, you’d have to pay me to take a standard server now.

This is why I predict that, subject to supply chain capacity, more than 50% of new data center servers will be based on this model in the next 4-5 years.

Atoms and Applications
So let’s dig a bit deeper into the specifics of these 256 servers and how they might impact application architectures. Each has a dual-core 1.66GHz 64-bit Intel Atom N570 processor with 4GB of DRAM. These are just about ideal Web servers and, according to Intel, the highest performance per watt of any Internet workload processer they’ve every built.

They’re really ideal “everyday” servers that can run a huge range of computing tasks. You wouldn’t run HPC workloads on these devices – such as CAD/CAM, simulations, etc. – or a scale-up database like Oracle RAC. My experience is that 4GB is actually a fairly typical VM size in an enterprise environment, so it seems like a pretty good all-purpose machine that can run the vast majority of traditional workloads.

They’d even be ideal as VDI (virtual desktop servers) where literally every running Windows desktop would get their own dedicated server. Cool!

Forrester’s James Staten, in a keynote address at CloudConnect 2011, recommended that people write applications that use many small instances when needed vs. fewer larger instances, and aggressively scale down (e.g. turn off) their instances when demand drops. That’s the best way to optimize economics in metered on-demand cloud business models.

So, with a little thought there’s really no need for most applications to require instances that are larger than 4GB of RAM and 1.66GHz of compute. You just need to build for that.

And databases are going this way too. New and future “scale out” database technologies such as ScaleBase, Akiban, Xeround, dbShards, TransLattice, and (at some future point) NimbusDB can actually run quite well in a SeaMicro configuration, just creating more instances as needed to meet workload demand. The SeaMicro model will accelerate demand for scale-out database technologies in all settings – including the enterprise.

In fact, some enterprises are already buying SeaMicro units for use with Hadoop MapReduce environments. Your own massively scalable distributed analytics farm can be a very compelling first use case.

This model heavily favors Linux due to the far smaller OS memory footprint as compared with Windows Server. Microsoft will have to put Windows Server on a diet to support this model of data center or risk a really bad TCO equation. SeaMicro is adding Windows certification soon, but I’m not sure how popular that will be.

If I’m right, then it would seem that application architectures will indeed be impacted by this – though in the scheme of things it’s probably pretty minor and in line with current trends in cloud.

Virtualization? No Thank You… I’ll Take My Public Cloud Single Tenant, Please!
SeaMicro claims that they can support running virtualization hosts on their servers, but for the life of me I don’t know why you’d want to in most cases.

What do you normally use virtualization for? Typically it’s to take big honking servers and chunk them up into smaller “virtual” servers that match application workload requirements. For that you pay a performance and license penalty. Sure, there are some other capabilities that you get with virtualization solutions, but these can be accomplished in other ways.

With small servers being the standard model going forward, most workloads won’t need to be virtualized.

And consider the tenancy issue. Your 4GB 1.66GHz instance can now run on its own physical server. Nobody else will be on your server impacting your workload or doing nefarious things. All of the security and performance concerns over multi-tenancy go away. With a 1.28 Tbps connectivity fabric, it’s unlikely that you’ll feel their impact at the network layer as well. SeaMicro claims 12x available bandwidth per unit of compute than traditional servers. Faster, more secure, what’s not to love?

And then there’s the cost of virtualization licenses. According to a now-missing blog post on the Virtualization for Services Providers blog (thank you Google) written by a current employee of the VCE Company, the service provider (VSPP) cost for VMware Standard is $5/GB per month. On a 4GB VM, that’s $240 per year – or 150% the cost of the SeaMicro node over three years! (VMware Premier is $15/GB, but in fairness you do get a lot of incremental functionality in that version). And for all that you get a decrease in performance having the hypervisor between you and the bare metal server.

Undoubtedly, Citrix (XenServer), RedHat (KVM), Microsoft (Hyper-V) and VMware will find ways to add value to the SeaMicro equation, but I suspect that many new approaches may emerge that make public clouds without the need for hypervisors a reality. As Feldman put it, SeaMicro represents a potential shift away from virtualization towards the old model of “physicalization” of infrastructure.

The SeaMicro approach represents the first truly new approach to data center architectures since the introduction of blades over a decade ago. You could argue – and I believe you’d be right – that low-power super-dense server clusters are a far more significant and disruptive innovation than blades ever were.

Because of the enormous decrease in TCO represented by this model, as much as 80% or more overall, it’s fairly safe to say that any prior predictions of future aggregate data center compute capacity are probably too low by a very wide margin. Perhaps even by an order of magnitude or more, depending on the price-elasticity of demand in this market.

Whew! This is some seriously good sh%t.

It’s the dawn of a new era in the data center, where the ants will reign supreme and will carry on their backs an unimaginably larger cloud than we had ever anticipated. Combined with hyper-efficient cloud operating models, information technology is about to experience a capacity and value-enablement explosion of Cambrian proportions.

What should you do? Embrace the ants as soon as possible, or face the inevitable Darwinian outcome.

The ants go marching one by one, hurrah, hurrah…

——————

(c) 2011 CloudBzz / TechBzz Media, LLC.  All rights reserved.  This post originally appeared at http://www.cloudbzz.com/seamicro-atom-and-the-ants/. You can follow CloudBzz on Twitter @CloudBzz.

More Stories By John Treadway

John Treadway is a Vice President at Cloud Technology Partners and has over 20 years of experience delivering technology and business solutions to domestic and global enterprises across multiple industries and sectors. As a senior enterprise technology and services executive, he has a successful track record of leading strategic cloud computing and data center initiatives. John is responsible for technology IP at Cloud Technology Partners, and is actively involved with client projects and strategic alliances. John is also an active blogger in the cloud computing space and authors the CloudBzz blog. Sites/Blogs CloudBzz

@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.