Welcome!

Microservices Expo Authors: John Rauser, Liz McMillan, Madhavan Krishnan, VP, Cloud Solutions, Virtusa, Jason Bloomberg, Pat Romanski

Related Topics: Microservices Expo

Microservices Expo: Article

From OLAP Cubes to ElastiCubes – The Natural Evolution of BI

The convergence of disk-based and in-memory technologies

OLAP (Online Analytical Processing) technology is the most prevalent technology used in corporate BI solutions today. And while it does what it’s supposed to do very well, it has a bad (and accurate) reputation for being very expensive and difficult to implement, as well as extremely challenging to maintain. This fact has prevented OLAP technology from gaining wide popularity outside of Fortune 500-scale companies, which are the only ones who have the budgets for company-wide, OLAP-based BI implementations.


Since the inception of BI and consequent entrance of OLAP technology into the space, the need for BI has been rapidly growing. Recognizing that OLAP-based solutions were (and still are) hard to introduce into a wider market, thought leaders and visionaries in the space have been since then trying to bring BI down to the masses through technological and conceptual innovation.

The most recently recognized innovation (even though it’s been around for quite a while) was in-memory technology, whose main advantage was cutting implementation time and simplifying the process as a whole (a definite step in the right direction). However, as described in my recent article, In-Memory BI is Not the Future, It's the Past, using in-memory technology for speedy BI implementation introduces significant compromises, especially in terms of scalability (both for data volumes and support for many concurrent users). Now, after in-memory technology has been on the market for some time, it is clear that it is not really a replacement for OLAP technology, but did in fact expand the BI market to a wider audience. In fact, it is probably more accurate to say that in-memory technology and OLAP technology complement each other, each with its own advantages and tradeoffs.

In that article I also briefly mentioned the new disk-based ElastiCube technology (invented by SiSense). ElastiCube technology basically eliminates the inherent IMDB tradeoffs by providing unlimited scalability using off-the-shelf hardware while delivering both implementation and query response times as fast (or faster) as pure in-memory-based solutions. This claim was the subject of many of the emails and inquires I received following the article’s publication. I was repeatedly asked how ElastiCube technology had achieved what OLAP technology had failed to do for so many years, and what role in-memory technology played in its conception.

Thus, in this article I will describe how ElastiCube technology came to be, what inspired it, what made it possible and how it has already become a game-changer in the BI space, both in large corporations and small startups.

A Brief History of BI and OLAP
OLAP technology started gaining popularity in the late 1990s, and that had a lot to do with Microsoft’s first release of their OLAP Services product (now Analysis Services), based on technology acquired from Panorama Software. At that point in time, computer hardware wasn’t nearly as powerful as it is today; given the circumstances at the time, OLAP was groundbreaking. It introduced a spectacular way for business users (typically analysts) to easily perform multidimensional analysis of large volumes of business data. When Microsoft’s Multidimensional Expressions language (MDX) came closer to becoming a standard, more and more client tools (e.g., Panorama NovaView, ProClarity) started popping up to provide even more power to these users.

While Microsoft was not the first BI vendor around, their OLAP Services product was unique and significantly helped increase overall awareness of the possibilities offered by BI. Microsoft started gaining market share fairly quickly, as more as more companies started investing in BI solutions.

But as the years passed by, it became very apparent that while the type of multidimensional BI empowered by OLAP technology was a valuable asset to any organization, it seemed to be used mainly by large corporations. OLAP is just too complex and requires too much time and money to be implemented and maintained, thus eliminating it as a viable option for the majority of the market.

See: Microsoft (SSAS), IBM (Cognos)

The Visualization Front-End Craze
As more companies began investing in BI solutions, many vendors recognized the great opportunity in bringing BI to the mass market of companies with less money to spend than Fortune 500 firms. This is where visualization front-end vendors started popping up like mushrooms after the rain, each of them promising advanced business analytics to the end user, with minimal or no IT projects involved. Their appeal was based on radically reducing the infamous total cost of ownership (TCO) of typical BI solutions. These products, many of which are still available today, are full of useful and advanced visualization features.

However, after years of selling these products, it became very clear that they are incapable of providing a true alternative to OLAP-based solutions. Since they fail to provide similar centralized data integration and management capabilities, they found themselves competing mainly with Excel, and were being used only for analysis and reporting of limited data sets by individuals or small workgroups.

In order to work around these limitations (and increase revenues), these tools were introduced connectivity to OLAP sources as well as to the tabular (e.g., spreadsheet) data they supported until then. By doing that, these products basically negated the purpose for which they were initially designed – to provide an alternative to the expensive OLAP-based BI solutions.

See: Tableau Software, Tibco SpotFire, Panorama Software

The In-Memory Opportunity
The proliferation of cheap and widely available 64-bit PCs during the past few years has somewhat changed the rules of the game. More RAM could be installed in a PC, a boon for those visualization front-end vendors struggling to get more market share. More RAM on a PC means that more data can be quickly queried. If crunching a million rows of data on a machine with only 2GB of RAM was a drag, users could now add more gigabytes of RAM to their PCs and instantly solve the problem. But still, without providing centralized data integration and management, this was not a true alternative to OLAP-based solutions that are still prominent in massive organization-wide (or even inter-departmental) implementations.

Strangely enough, out of all the in-memory technology vendors out there, only one realized that using in-memory technology to empower individual users wasn't enough and that the way to gain more significant market share was to provide an end-to-end solution, from ETL to centralized data sharing to a front-end development environment. This vendor is QlikTech and it is no wonder that the company is flying high above the rest of the non-OLAP BI players. QlikTech used in-memory technology to cover a much wider range of BI solutions than any single front-end visualization tool could ever do.

By providing data integration and centralized data access capabilities, QlikTech was able to provide solutions that, for other vendors (in-memory or otherwise), required at least a lengthy data warehouse project if not a full-blown OLAP implementation. By utilizing in-memory technology in conjunction with 64-bit computing, QlikTech solutions work even on substantial amounts of data (significantly more than their traditional disk-based competitors could).

However, QlikTech has not been able to make a case for replacing OLAP yet. I believe this is not only because of the scalability issues and hardware requirements involved when large amounts of data and/or users are involved, but it’s also because they do not inherently support dimensional modeling like OLAP does. Apart from making life simpler for IT when maintaining multiple applications, OLAP’s implementation of a dimensional model also gives end users, via supporting front end tools, a broader range of flexibility in creating their own BI applications.

Microsoft, the newest entry into the in-memory BI game, also started marketing its in-memory PowerPivot solution as an alternative to OLAP, basically admitting it gives up on its Analysis Services as a viable solution for the wider mid-market.

See: QlikTech (QlikView), Microsoft (PowerPivot)

The SaaS/Cloud BI Hype
The SaaS/Cloud hype hasn’t skipped over the BI space, though running BI in the cloud does not dramatically change anything in respect to implementation time and/or complexity of implementation. In fact, cloud BI vendors use the same technologies that are widely used on-premises. There are several startup companies in this space, competing for niche markets. It’s still hard to tell what impact the cloud would have on the BI space as a whole as none of these companies has yet to prove there’s even a viable business for hosting BI in the cloud. One thing is certain, though: these companies cannot rely on in-memory technology to grow significantly. The costs of hardware and the amount of work required to support the number of customers they would need to thrive are prohibitive, to say the least. For more on the problem with cloud BI, see my earlier post, Would I Use Cloud Business Intelligence?

See: GoodData, YouCalc, Birst, PivotLink, Indicee

ElastiCube: Convergent Technologies for an Optimum Solution
ElastiCube technology was officially introduced to the market in late 2009, after more than five years of research and development conducted in complete secrecy. After being proved practical and effective in the real world (by being successfully implemented at over 100 companies, paying customers in numerous industries, from startups to multinational corporations), SiSense secured a $4 million investment to continue the development of the ElastiCube technology, and to expand awareness of the Prism Business Intelligence product which is based on the technology.

ElastiCube is the result of thoroughly analyzing the strengths and weaknesses of both OLAP and in-memory technologies, while taking into consideration the off-the-shelf hardware of today and tomorrow. The vision was to provide a true alternative to OLAP technology, without compromising on the speediness of the development cycle and query response times for which in-memory technologies are lauded. This would allow a single technology to be used in BI solutions of any scale, in any industry.

Here are the 10 main goals on which SiSense focused when designing the ElastiCube technology:

  1. A data warehouse must not be assumed to exist for effectively querying multiple sources.
  2. A star schema must not be assumed to exist for effective querying large amounts of data.
  3. The solution must provide unlimited scalability, both in terms of number of rows and number of fields, within a finite and reasonable amount of RAM.
  4. The solution must be able to operate using off-the-shelf hardware, even for extreme data/user scenarios.
  5. The solution must provide high-speed, out-of-the-box query performance, without requiring pre-calculations.
  6. There must be a separation between the application layer and the physical data layer via a virtual metadata layer.
  7. There must be support for a dimensional model and multidimensional analysis.
  8. The same application must be able to support a single user with a laptop to thousands of users via a central, server-based data repository.
  9. Without running an SQL database, an SQL layer must be available to conform to industry standards.
  10. The solution must offer the ability to incorporate additional/changed data (e.g., new rows, new fields) on the fly, without reprocessing the entire data model.
The presently available version of Prism, based on ElastiCube technology, delivers on every one of these requirements. Even though it would be a lot of fun for me, I unfortunately can’t delve into the nuts and bolts of how these goals are technologically achieved. What I can say is that ElastiCube utilizes columnar storage concepts as well as just-in-time in-memory query processing technology. If you want to read a little about it, you can take a look at SiSense’s ElastiCube technology page.

I can add that the feasibility of ElastiCube was greatly affected by the amazing CPU and disk technologies that now come with any run-of-the-mill personal computer.

ElastiCube is extremely powerful technology that enables speedy implementation of individual, workgroup and corporate-wide BI. As a solution that delivers the promise of OLAP-style BI without the cost, time and IT overhead of OLAP, it is no surprise that Prism is rapidly gaining popularity in the market. Businesses that use ElastiCube technology include household names such as, Target, Yahoo, Cisco, Samsung, Philips and Caterpillar. But a significant portion of business that use ElastiCube are significantly smaller, such as Wix and other startup companies - who otherwise could not afford BI at all.

See: SiSense (Prism)

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

@MicroservicesExpo Stories
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
Many enterprise and government IT organizations are realizing the benefits of cloud computing by extending IT delivery and management processes across private and public cloud services. But they are often challenged with balancing the need for centralized cloud governance without stifling user-driven innovation. This strategy requires an approach that fundamentally reshapes how IT is delivered today, shifting the focus from infrastructure to services aggregation, and mixing and matching the bes...
identify the sources of event storms and performance anomalies will require automated, real-time root-cause analysis. I think Enterprise Management Associates said it well: “The data and metrics collected at instrumentation points across the application ecosystem are essential to performance monitoring and root cause analysis. However, analytics capable of transforming data and metrics into an application-focused report or dashboards are what separates actual application monitoring from relat...
The benefits of automation are well documented; it increases productivity, cuts cost and minimizes errors. It eliminates repetitive manual tasks, freeing us up to be more innovative. By that logic, surely, we should automate everything possible, right? So, is attempting to automate everything a sensible - even feasible - goal? In a word: no. Consider this your short guide as to what to automate and what not to automate.
DevOps teams have more on their plate than ever. As infrastructure needs grow, so does the time required to ensure that everything's running smoothly. This makes automation crucial - especially in the server and network monitoring world. Server monitoring tools can save teams time by automating server management and providing real-time performance updates. As budgets reset for the New Year, there is no better time to implement a new server monitoring tool (or re-evaluate your current solution)....
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
We just came off of a review of a product that handles both containers and virtual machines in the same interface. Under the covers, implementation of containers defaults to LXC, though recently Docker support was added. When reading online, or searching for information, increasingly we see “Container Management” products listed as competitors to Docker, when in reality things like Rocket, LXC/LXD, and Virtualization are Dockers competitors. After doing some looking around, we have decided tha...
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
While we understand Agile as a means to accelerate innovation, manage uncertainty and cope with ambiguity, many are inclined to think that it conflicts with the objectives of traditional engineering projects, such as building a highway, skyscraper or power plant. These are plan-driven and predictive projects that seek to avoid any uncertainty. This type of thinking, however, is short-sighted. Agile approaches are valuable in controlling uncertainty because they constrain the complexity that ste...
Digital transformation has changed the way users interact with the world, and the traditional healthcare experience no longer meets rising consumer expectations. Enterprise Health Clouds (EHCs) are designed to easily and securely deliver the smart and engaging digital health experience that patients expect today, while ensuring the compliance and data integration that care providers require. Jikku Venkat