Welcome!

Microservices Expo Authors: Elizabeth White, Aruna Ravichandran, Liz McMillan, Pat Romanski, Cameron Van Orman

Related Topics: Microservices Expo

Microservices Expo: Article

From OLAP Cubes to ElastiCubes – The Natural Evolution of BI

The convergence of disk-based and in-memory technologies

OLAP (Online Analytical Processing) technology is the most prevalent technology used in corporate BI solutions today. And while it does what it’s supposed to do very well, it has a bad (and accurate) reputation for being very expensive and difficult to implement, as well as extremely challenging to maintain. This fact has prevented OLAP technology from gaining wide popularity outside of Fortune 500-scale companies, which are the only ones who have the budgets for company-wide, OLAP-based BI implementations.


Since the inception of BI and consequent entrance of OLAP technology into the space, the need for BI has been rapidly growing. Recognizing that OLAP-based solutions were (and still are) hard to introduce into a wider market, thought leaders and visionaries in the space have been since then trying to bring BI down to the masses through technological and conceptual innovation.

The most recently recognized innovation (even though it’s been around for quite a while) was in-memory technology, whose main advantage was cutting implementation time and simplifying the process as a whole (a definite step in the right direction). However, as described in my recent article, In-Memory BI is Not the Future, It's the Past, using in-memory technology for speedy BI implementation introduces significant compromises, especially in terms of scalability (both for data volumes and support for many concurrent users). Now, after in-memory technology has been on the market for some time, it is clear that it is not really a replacement for OLAP technology, but did in fact expand the BI market to a wider audience. In fact, it is probably more accurate to say that in-memory technology and OLAP technology complement each other, each with its own advantages and tradeoffs.

In that article I also briefly mentioned the new disk-based ElastiCube technology (invented by SiSense). ElastiCube technology basically eliminates the inherent IMDB tradeoffs by providing unlimited scalability using off-the-shelf hardware while delivering both implementation and query response times as fast (or faster) as pure in-memory-based solutions. This claim was the subject of many of the emails and inquires I received following the article’s publication. I was repeatedly asked how ElastiCube technology had achieved what OLAP technology had failed to do for so many years, and what role in-memory technology played in its conception.

Thus, in this article I will describe how ElastiCube technology came to be, what inspired it, what made it possible and how it has already become a game-changer in the BI space, both in large corporations and small startups.

A Brief History of BI and OLAP
OLAP technology started gaining popularity in the late 1990s, and that had a lot to do with Microsoft’s first release of their OLAP Services product (now Analysis Services), based on technology acquired from Panorama Software. At that point in time, computer hardware wasn’t nearly as powerful as it is today; given the circumstances at the time, OLAP was groundbreaking. It introduced a spectacular way for business users (typically analysts) to easily perform multidimensional analysis of large volumes of business data. When Microsoft’s Multidimensional Expressions language (MDX) came closer to becoming a standard, more and more client tools (e.g., Panorama NovaView, ProClarity) started popping up to provide even more power to these users.

While Microsoft was not the first BI vendor around, their OLAP Services product was unique and significantly helped increase overall awareness of the possibilities offered by BI. Microsoft started gaining market share fairly quickly, as more as more companies started investing in BI solutions.

But as the years passed by, it became very apparent that while the type of multidimensional BI empowered by OLAP technology was a valuable asset to any organization, it seemed to be used mainly by large corporations. OLAP is just too complex and requires too much time and money to be implemented and maintained, thus eliminating it as a viable option for the majority of the market.

See: Microsoft (SSAS), IBM (Cognos)

The Visualization Front-End Craze
As more companies began investing in BI solutions, many vendors recognized the great opportunity in bringing BI to the mass market of companies with less money to spend than Fortune 500 firms. This is where visualization front-end vendors started popping up like mushrooms after the rain, each of them promising advanced business analytics to the end user, with minimal or no IT projects involved. Their appeal was based on radically reducing the infamous total cost of ownership (TCO) of typical BI solutions. These products, many of which are still available today, are full of useful and advanced visualization features.

However, after years of selling these products, it became very clear that they are incapable of providing a true alternative to OLAP-based solutions. Since they fail to provide similar centralized data integration and management capabilities, they found themselves competing mainly with Excel, and were being used only for analysis and reporting of limited data sets by individuals or small workgroups.

In order to work around these limitations (and increase revenues), these tools were introduced connectivity to OLAP sources as well as to the tabular (e.g., spreadsheet) data they supported until then. By doing that, these products basically negated the purpose for which they were initially designed – to provide an alternative to the expensive OLAP-based BI solutions.

See: Tableau Software, Tibco SpotFire, Panorama Software

The In-Memory Opportunity
The proliferation of cheap and widely available 64-bit PCs during the past few years has somewhat changed the rules of the game. More RAM could be installed in a PC, a boon for those visualization front-end vendors struggling to get more market share. More RAM on a PC means that more data can be quickly queried. If crunching a million rows of data on a machine with only 2GB of RAM was a drag, users could now add more gigabytes of RAM to their PCs and instantly solve the problem. But still, without providing centralized data integration and management, this was not a true alternative to OLAP-based solutions that are still prominent in massive organization-wide (or even inter-departmental) implementations.

Strangely enough, out of all the in-memory technology vendors out there, only one realized that using in-memory technology to empower individual users wasn't enough and that the way to gain more significant market share was to provide an end-to-end solution, from ETL to centralized data sharing to a front-end development environment. This vendor is QlikTech and it is no wonder that the company is flying high above the rest of the non-OLAP BI players. QlikTech used in-memory technology to cover a much wider range of BI solutions than any single front-end visualization tool could ever do.

By providing data integration and centralized data access capabilities, QlikTech was able to provide solutions that, for other vendors (in-memory or otherwise), required at least a lengthy data warehouse project if not a full-blown OLAP implementation. By utilizing in-memory technology in conjunction with 64-bit computing, QlikTech solutions work even on substantial amounts of data (significantly more than their traditional disk-based competitors could).

However, QlikTech has not been able to make a case for replacing OLAP yet. I believe this is not only because of the scalability issues and hardware requirements involved when large amounts of data and/or users are involved, but it’s also because they do not inherently support dimensional modeling like OLAP does. Apart from making life simpler for IT when maintaining multiple applications, OLAP’s implementation of a dimensional model also gives end users, via supporting front end tools, a broader range of flexibility in creating their own BI applications.

Microsoft, the newest entry into the in-memory BI game, also started marketing its in-memory PowerPivot solution as an alternative to OLAP, basically admitting it gives up on its Analysis Services as a viable solution for the wider mid-market.

See: QlikTech (QlikView), Microsoft (PowerPivot)

The SaaS/Cloud BI Hype
The SaaS/Cloud hype hasn’t skipped over the BI space, though running BI in the cloud does not dramatically change anything in respect to implementation time and/or complexity of implementation. In fact, cloud BI vendors use the same technologies that are widely used on-premises. There are several startup companies in this space, competing for niche markets. It’s still hard to tell what impact the cloud would have on the BI space as a whole as none of these companies has yet to prove there’s even a viable business for hosting BI in the cloud. One thing is certain, though: these companies cannot rely on in-memory technology to grow significantly. The costs of hardware and the amount of work required to support the number of customers they would need to thrive are prohibitive, to say the least. For more on the problem with cloud BI, see my earlier post, Would I Use Cloud Business Intelligence?

See: GoodData, YouCalc, Birst, PivotLink, Indicee

ElastiCube: Convergent Technologies for an Optimum Solution
ElastiCube technology was officially introduced to the market in late 2009, after more than five years of research and development conducted in complete secrecy. After being proved practical and effective in the real world (by being successfully implemented at over 100 companies, paying customers in numerous industries, from startups to multinational corporations), SiSense secured a $4 million investment to continue the development of the ElastiCube technology, and to expand awareness of the Prism Business Intelligence product which is based on the technology.

ElastiCube is the result of thoroughly analyzing the strengths and weaknesses of both OLAP and in-memory technologies, while taking into consideration the off-the-shelf hardware of today and tomorrow. The vision was to provide a true alternative to OLAP technology, without compromising on the speediness of the development cycle and query response times for which in-memory technologies are lauded. This would allow a single technology to be used in BI solutions of any scale, in any industry.

Here are the 10 main goals on which SiSense focused when designing the ElastiCube technology:

  1. A data warehouse must not be assumed to exist for effectively querying multiple sources.
  2. A star schema must not be assumed to exist for effective querying large amounts of data.
  3. The solution must provide unlimited scalability, both in terms of number of rows and number of fields, within a finite and reasonable amount of RAM.
  4. The solution must be able to operate using off-the-shelf hardware, even for extreme data/user scenarios.
  5. The solution must provide high-speed, out-of-the-box query performance, without requiring pre-calculations.
  6. There must be a separation between the application layer and the physical data layer via a virtual metadata layer.
  7. There must be support for a dimensional model and multidimensional analysis.
  8. The same application must be able to support a single user with a laptop to thousands of users via a central, server-based data repository.
  9. Without running an SQL database, an SQL layer must be available to conform to industry standards.
  10. The solution must offer the ability to incorporate additional/changed data (e.g., new rows, new fields) on the fly, without reprocessing the entire data model.
The presently available version of Prism, based on ElastiCube technology, delivers on every one of these requirements. Even though it would be a lot of fun for me, I unfortunately can’t delve into the nuts and bolts of how these goals are technologically achieved. What I can say is that ElastiCube utilizes columnar storage concepts as well as just-in-time in-memory query processing technology. If you want to read a little about it, you can take a look at SiSense’s ElastiCube technology page.

I can add that the feasibility of ElastiCube was greatly affected by the amazing CPU and disk technologies that now come with any run-of-the-mill personal computer.

ElastiCube is extremely powerful technology that enables speedy implementation of individual, workgroup and corporate-wide BI. As a solution that delivers the promise of OLAP-style BI without the cost, time and IT overhead of OLAP, it is no surprise that Prism is rapidly gaining popularity in the market. Businesses that use ElastiCube technology include household names such as, Target, Yahoo, Cisco, Samsung, Philips and Caterpillar. But a significant portion of business that use ElastiCube are significantly smaller, such as Wix and other startup companies - who otherwise could not afford BI at all.

See: SiSense (Prism)

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

@MicroservicesExpo Stories
We all know that end users experience the Internet primarily with mobile devices. From an app development perspective, we know that successfully responding to the needs of mobile customers depends on rapid DevOps – failing fast, in short, until the right solution evolves in your customers' relationship to your business. Whether you’re decomposing an SOA monolith, or developing a new application cloud natively, it’s not a question of using microservices – not doing so will be a path to eventual b...
Transforming cloud-based data into a reportable format can be a very expensive, time-intensive and complex operation. As a SaaS platform with more than 30 million global users, Cornerstone OnDemand’s challenge was to create a scalable solution that would improve the time it took customers to access their user data. Our Real-Time Data Warehouse (RTDW) process vastly reduced data time-to-availability from 24 hours to just 10 minutes. In his session at 21st Cloud Expo, Mark Goldin, Chief Technolo...
Digital transformation leaders have poured tons of money and effort into coding in recent years. And with good reason. To succeed at digital, you must be able to write great code. You also have to build a strong Agile culture so your coding efforts tightly align with market signals and business outcomes. But if your investments in testing haven’t kept pace with your investments in coding, you’ll lose. But if your investments in testing haven’t kept pace with your investments in coding, you’ll...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, will describe how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launchi...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
Containers are rapidly finding their way into enterprise data centers, but change is difficult. How do enterprises transform their architecture with technologies like containers without losing the reliable components of their current solutions? In his session at @DevOpsSummit at 21st Cloud Expo, Tony Campbell, Director, Educational Services at CoreOS, will explore the challenges organizations are facing today as they move to containers and go over how Kubernetes applications can deploy with lega...
Today most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes significant work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reducti...
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
Is advanced scheduling in Kubernetes achievable? Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, will answer these questions and demonstrate techniques for implementing advanced scheduling. For example, using spot instances ...
SYS-CON Events announced today that Cloud Academy has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Cloud Academy is the leading technology training platform for enterprise multi-cloud infrastructure. Cloud Academy is trusted by leading companies to deliver continuous learning solutions across Amazon Web Services, Microsoft Azure, Google Cloud Platform, and the most...
The last two years has seen discussions about cloud computing evolve from the public / private / hybrid split to the reality that most enterprises will be creating a complex, multi-cloud strategy. Companies are wary of committing all of their resources to a single cloud, and instead are choosing to spread the risk – and the benefits – of cloud computing across multiple providers and internal infrastructures, as they follow their business needs. Will this approach be successful? How large is the ...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
Many organizations adopt DevOps to reduce cycle times and deliver software faster; some take on DevOps to drive higher quality and better end-user experience; others look to DevOps for a clearer line-of-sight to customers to drive better business impacts. In truth, these three foundations go together. In this power panel at @DevOpsSummit 21st Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, industry experts will discuss how leading organizations build application success from all...
DevSecOps – a trend around transformation in process, people and technology – is about breaking down silos and waste along the software development lifecycle and using agile methodologies, automation and insights to help get apps to market faster. This leads to higher quality apps, greater trust in organizations, less organizational friction, and ultimately a five-star customer experience. These apps are the new competitive currency in this digital economy and they’re powered by data. Without ...
A common misconception about the cloud is that one size fits all. Companies expecting to run all of their operations using one cloud solution or service must realize that doing so is akin to forcing the totality of their business functionality into a straightjacket. Unlocking the full potential of the cloud means embracing the multi-cloud future where businesses use their own cloud, and/or clouds from different vendors, to support separate functions or product groups. There is no single cloud so...
For most organizations, the move to hybrid cloud is now a question of when, not if. Fully 82% of enterprises plan to have a hybrid cloud strategy this year, according to Infoholic Research. The worldwide hybrid cloud computing market is expected to grow about 34% annually over the next five years, reaching $241.13 billion by 2022. Companies are embracing hybrid cloud because of the many advantages it offers compared to relying on a single provider for all of their cloud needs. Hybrid offers bala...
With the modern notion of digital transformation, enterprises are chipping away at the fundamental organizational and operational structures that have been with us since the nineteenth century or earlier. One remarkable casualty: the business process. Business processes have become so ingrained in how we envision large organizations operating and the roles people play within them that relegating them to the scrap heap is almost unimaginable, and unquestionably transformative. In the Digital ...
These days, APIs have become an integral part of the digital transformation journey for all enterprises. Every digital innovation story is connected to APIs . But have you ever pondered over to know what are the source of these APIs? Let me explain - APIs sources can be varied, internal or external, solving different purposes, but mostly categorized into the following two categories. Data lakes is a term used to represent disconnected but relevant data that are used by various business units wit...
The nature of the technology business is forward-thinking. It focuses on the future and what’s coming next. Innovations and creativity in our world of software development strive to improve the status quo and increase customer satisfaction through speed and increased connectivity. Yet, while it's exciting to see enterprises embrace new ways of thinking and advance their processes with cutting edge technology, it rarely happens rapidly or even simultaneously across all industries.
It has never been a better time to be a developer! Thanks to cloud computing, deploying our applications is much easier than it used to be. How we deploy our apps continues to evolve thanks to cloud hosting, Platform-as-a-Service (PaaS), and now Function-as-a-Service. FaaS is the concept of serverless computing via serverless architectures. Software developers can leverage this to deploy an individual "function", action, or piece of business logic. They are expected to start within milliseconds...