Click here to close now.




















Welcome!

Microservices Expo Authors: Pat Romanski, VictorOps Blog, Elizabeth White, Liz McMillan, Ruxit Blog

Related Topics: Microservices Expo

Microservices Expo: Article

In-Memory BI Is Not the Future, It’s the Past

Why the current in-memory BI hype can be misleading.

In recent times, one of the most popular subjects related to the field of Business Intelligence (BI) has been In-memory BI technology. The subject gained popularity largely due to the success of QlikTech, provider of the in-memory-based QlikView BI product. Following QlikTech’s lead, many other BI vendors have jumped on the in-memory “hype wagon,” including the software giant, Microsoft, which has been aggressively marketing PowerPivot, their own in-memory database engine.

The increasing hype surrounding in-memory BI has caused BI consultants, analysts and even vendors to spew out endless articles, blog posts and white papers on the subject, many of which have also gone the extra mile to describe in-memory technology as the future of business intelligence, the death blow to the data warehouse and the swan song of OLAP technology. I find one of these in my inbox every couple of weeks.

Just so it is clear - the concept of in-memory business intelligence is not new. It has been around for many years. The only reason it became widely known recently is because it wasn’t feasible before 64-bit computing became commonly available. Before 64-bit processors, the maximum amount of RAM a computer could utilize was barely 4GB, which is hardly enough to accommodate even the simplest of multi-user BI solutions. Only when 64-bit systems became cheap enough did it became possible to consider in-memory technology as a practical option for BI.

The success of QlikTech and the relentless activities of Microsoft’s marketing machine have managed to confuse many in terms of what role in-memory technology plays in BI implementations. And that is why many of the articles out there, which are written by marketers or market analysts who are not proficient in the internal workings of database technology (and assume their readers aren’t either), are usually filled with inaccuracies and, in many cases, pure nonsense.

The purpose of this article is to put both in-memory and disk-based BI technologies in perspective, explain the differences between them and finally lay out, in simple terms, why disk-based BI technology isn’t on its way to extinction. Rather, disk-based BI technology is evolving into something that will significantly limit the use of in-memory technology in typical BI implementations.

But before we get to that, for the sake of those who are not very familiar with in-memory BI technology, here’s a brief introduction to the topic.

Disk and RAM
Generally speaking, your computer has two types of data storage mechanisms – disk (often called a hard disk) and RAM (random access memory). The important differences between them (for this discussion) are outlined in the following table:

Disk RAM
Abundant Scarce
Slower Faster
Cheap Expensive
Long-term Short-term

Most modern computers have 15-100 times more available disk storage than they do RAM. My laptop, for example, has 8GB of RAM and 300GB of available disk space. However, reading data from disk is much slower than reading the same data from RAM. This is one of the reasons why 1GB of RAM costs approximately 320 times that of 1GB of disk space.

Another important distinction is what happens to the data when the computer is powered down: data stored on disk is unaffected (which is why your saved documents are still there the next time you turn on your computer), but data residing in RAM is instantly lost. So, while you don’t have to re-create your disk-stored Microsoft Word documents after a reboot, you do have to re-load the operating system, re-launch the word processor and reload your document. This is because applications and their internal data are partly, if not entirely, stored in RAM while they are running.

Disk-based Databases and In-memory Databases
Now that we have a general idea of what the basic differences between disk and RAM are, what are the differences between disk-based and in-memory databases? Well, all data is always kept on hard disks (so that they are saved even when the power goes down). When we talk about whether a database is disk-based or in-memory, we are talking about where the data resides while it is actively being queried by an application: with disk-based databases, the data is queried while stored on disk and with in-memory databases, the data being queried is first loaded into RAM.

Disk-based databases are engineered to efficiently query data residing on the hard drive. At a very basic level, these databases assume that the entire data cannot fit inside the relatively small amount of RAM available and therefore must have very efficient disk reads in order for queries to be returned within a reasonable time frame. The engineers of such databases have the benefit of unlimited storage, but must face the challenges of relying on relatively slow disk operations.

On the other hand, in-memory databases work under the opposite assumption that the data can, in fact, fit entirely inside the RAM. The engineers of in-memory databases benefit from utilizing the fastest storage system a computer has (RAM), but have much less of it at their disposal.

That is the fundamental trade-off in disk-based and in-memory technologies: faster reads and limited amounts of data versus slower reads and practically unlimited amounts of data. These are two critical considerations for business intelligence applications, as it is important both to have fast query response times and to have access to as much data as possible.

The Data Challenge
A business intelligence solution (almost) always has a single data store at its center. This data store is usually called a database, data warehouse, data mart or OLAP cube. This is where the data that can be queried by the BI application is stored.

The challenges in creating this data store using traditional disk-based technologies is what gave in-memory technology its 15 minutes (ok, maybe 30 minutes) of fame. Having the entire data model stored inside RAM allowed bypassing some of the challenges encountered by their disk-based counterparts, namely the issue of query response times or ‘slow queries.’

Disk-based BI
When saying ‘traditional disk-based’ technologies, we typically mean relational database management systems (RDBMS) such as SQL Server, Oracle, MySQL and many others. It’s true that having a BI solution perform well using these types of databases as their backbone is far more challenging than simply shoving the entire data model into RAM, where performance gains would be immediate due to the fact RAM is so much faster than disk.

It’s commonly thought that relational databases are too slow for BI queries over data in (or close to) its raw form due to the fact they are disk-based. The truth is, however, that it’s because of how they use the disk and how often they use it.

Relational databases were designed with transactional processing in mind. But having a database be able to support high-performance insertions and updates of transactions (i.e., rows in a table) as well as properly accommodating the types of queries typically executed in BI solutions (e.g., aggregating, grouping, joining) is impossible. These are two mutually-exclusive engineering goals, that is to say they require completely different architectures at the very core. You simply can’t use the same approach to ideally achieve both.

In addition, the standard query language used to extract transactions from relational databases (SQL) is syntactically designed for the efficient fetching of rows, while rare are the cases in BI where you would need to scan or retrieve an entire row of data. It is nearly impossible to formulate an efficient BI query using SQL syntax.

So while relational databases are great as the backbone of operational applications such as CRM, ERP or Web sites, where transactions are frequently and simultaneously inserted, they are a poor choice for supporting analytic applications which usually involve simultaneous retrieval of partial rows along with heavy calculations.

In-memory BI
In-memory databases approach the querying problem by loading the entire dataset into RAM. In so doing, they remove the need to access the disk to run queries, thus gaining an immediate and substantial performance advantage (simply because scanning data in RAM is orders of magnitude faster than reading it from disk). Some of these databases introduce additional optimizations which further improve performance. Most of them also employ compression techniques to represent even more data in the same amount of RAM.

Regardless of what fancy footwork is used with an in-memory database, storing the entire dataset in RAM has a serious implication: the amount of data you can query with in-memory technology is limited by the amount of free RAM available, and there will always be much less available RAM than available disk space.

The bottom line is that this limited memory space means that the quality and effectiveness of your BI application will be hindered: the more historical data to which you have access and/or the more fields you can query, the better analysis, insight and, well, intelligence you can get.

You could add more and more RAM, but then the hardware you require becomes exponentially more expensive. The fact that 64-bit computers are cheap and can theoretically support unlimited amounts of RAM does not mean they actually do in practice. A standard desktop-class (read: cheap) computer with standard hardware physically supports up to 12GB of RAM today. If you need more, you can move on to a different class of computer which costs about twice as much and will allow you up to 64GB. Beyond 64GB, you can no longer use what is categorized as a personal computer but will require a full-blown server which brings you into very expensive computing territory.

It is also important to understand that the amount of RAM you need is not only affected by the amount of data you have, but also by the number of people simultaneously querying it. Having 5-10 people using the same in-memory BI application could easily double the amount of RAM required for intermediate calculations that need to be performed to generate the query results. A key success factor in most BI solutions is having a large number of users, so you need to tread carefully when considering in-memory technology for real-world BI. Otherwise, your hardware costs may spiral beyond what you are willing or able to spend (today, or in the future as your needs increase).

There are other implications to having your data model stored in memory, such as having to re-load it from disk to RAM every time the computer reboots and not being able to use the computer for anything other than the particular data model you’re using because its RAM is all used up.

A Note about QlikView and PowerPivot In-memory Technologies
QlikTech is the most active in-memory BI player out there so their QlikView in-memory technology is worth addressing in its own right. It has been repeatedly described as “unique, patented associative technology” but, in fact, there is nothing “associative” about QlikView’s in-memory technology. QlikView uses a simple tabular data model, stored entirely in-memory, with basic token-based compression applied to it. In QlikView’s case, the word associative relates to the functionality of its user interface, not how the data model is physically stored. Associative databases are a completely different beast and have nothing in common with QlikView’s technology.

PowerPivot uses a similar concept, but is engineered somewhat differently due to the fact it’s meant to be used largely within Excel. In this respect, PowerPivot relies on a columnar approach to storage that is better suited for the types of calculations conducted in Excel 2010, as well as for compression. Quality of compression is a significant differentiator between in-memory technologies as better compression means that you can store more data in the same amount RAM (i.e., more data is available for users to query). In its current version, however, PowerPivot is still very limited in the amounts of data it supports and requires a ridiculous amount of RAM.

The Present and Future Technologies
The destiny of BI lies in technologies that leverage the respective benefits of both disk-based and in-memory technologies to deliver fast query responses and extensive multi-user access without monstrous hardware requirements. Obviously, these technologies cannot be based on relational databases, but they must also not be designed to assume a massive amount of RAM, which is a very scarce resource.

These types of technologies are not theoretical anymore and are already utilized by businesses worldwide. Some are designed to distribute different portions of complex queries across multiple cheaper computers (this is a good option for cloud-based BI systems) and some are designed to take advantage of 21st-century hardware (multi-core architectures, upgraded CPU cache sizes, etc.) to extract more juice from off-the-shelf computers.

A Final Note: ElastiCube Technology
The technology developed by the company I co-founded, SiSense, belongs to the latter category. That is, SiSense utilizes technology which combines the best of disk-based and in-memory solutions, essentially eliminating the downsides of each. SiSense’s BI product, Prism, enables a standard PC to deliver a much wider variety of BI solutions, even when very large amounts of data, large numbers of users and/or large numbers of data sources are involved, as is the case in typical BI projects.

When we began our research at SiSense, our technological assumption was that it is possible to achieve in-memory-class query response times, even for hundreds of users simultaneously accessing massive data sets, while keeping the data (mostly) stored on disk. The result of our hybrid disk-based/in-memory technology is a BI solution based on what we now call ElastiCube, after which this blog is named. You can read more about this technological approach, which we call Just-in-Time In-memory Processing, at our BI Software Evolved technology page.

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

@MicroservicesExpo Stories
Skeuomorphism usually means retaining existing design cues in something new that doesn’t actually need them. However, the concept of skeuomorphism can be thought of as relating more broadly to applying existing patterns to new technologies that, in fact, cry out for new approaches. In his session at DevOps Summit, Gordon Haff, Senior Cloud Strategy Marketing and Evangelism Manager at Red Hat, discussed why containers should be paired with new architectural practices such as microservices rathe...
Early in my DevOps Journey, I was introduced to a book of great significance circulating within the Web Operations industry titled The Phoenix Project. (You can read our review of Gene’s book, if interested.) Written as a novel and loosely based on many of the same principles explored in The Goal, this book has been read and referenced by many who have adopted DevOps into their continuous improvement and software delivery processes around the world. As I began planning my travel schedule last...
Any Ops team trying to support a company in today’s cloud-connected world knows that a new way of thinking is required – one just as dramatic than the shift from Ops to DevOps. The diversity of modern operations requires teams to focus their impact on breadth vs. depth. In his session at DevOps Summit, Adam Serediuk, Director of Operations at xMatters, Inc., will discuss the strategic requirements of evolving from Ops to DevOps, and why modern Operations has begun leveraging the “NoOps” approa...
In today's digital world, change is the one constant. Disruptive innovations like cloud, mobility, social media, and the Internet of Things have reshaped the market and set new standards in customer expectations. To remain competitive, businesses must tap the potential of emerging technologies and markets through the rapid release of new products and services. However, the rigid and siloed structures of traditional IT platforms and processes are slowing them down – resulting in lengthy delivery ...
The Microservices architectural pattern promises increased DevOps agility and can help enable continuous delivery of software. This session is for developers who are transforming existing applications to cloud-native applications, or creating new microservices style applications. In his session at DevOps Summit, Jim Bugwadia, CEO of Nirmata, will introduce best practices, patterns, challenges, and solutions for the development and operations of microservices style applications. He will discuss ...
In his session at 17th Cloud Expo, Ernest Mueller, Product Manager at Idera, will explain the best practices and lessons learned for tracking and optimizing costs while delivering a cloud-hosted service. He will describe a DevOps approach where the applications and systems work together to track usage, model costs in a granular fashion, and make smart decisions at runtime to minimize costs. The trickier parts covered include triggering off the right metrics; balancing resilience and redundancy ...
Docker containerization is increasingly being used in production environments. How can these environments best be monitored? Monitoring Docker containers as if they are lightweight virtual machines (i.e., monitoring the host from within the container), with all the common metrics that can be captured from an operating system, is an insufficient approach. Docker containers can’t be treated as lightweight virtual machines; they must be treated as what they are: isolated processes running on hosts....
Before becoming a developer, I was in the high school band. I played several brass instruments - including French horn and cornet - as well as keyboards in the jazz stage band. A musician and a nerd, what can I say? I even dabbled in writing music for the band. Okay, mostly I wrote arrangements of pop music, so the band could keep the crowd entertained during Friday night football games. What struck me then was that, to write parts for all the instruments - brass, woodwind, percussion, even k...
Whether you like it or not, DevOps is on track for a remarkable alliance with security. The SEC didn’t approve the merger. And your boss hasn’t heard anything about it. Yet, this unruly triumvirate will soon dominate and deliver DevSecOps faster, cheaper, better, and on an unprecedented scale. In his session at DevOps Summit, Frank Bunger, VP of Customer Success at ScriptRock, will discuss how this cathartic moment will propel the DevOps movement from such stuff as dreams are made on to a prac...
SYS-CON Events announced today that G2G3 will exhibit at SYS-CON's @DevOpsSummit Silicon Valley, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Based on a collective appreciation for user experience, design, and technology, G2G3 is uniquely qualified and motivated to redefine how organizations and people engage in an increasingly digital world.
SYS-CON Events announced today that DataClear Inc. will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. The DataClear ‘BlackBox’ is the only solution that moves your PC, browsing and data out of the United States and away from prying (and spying) eyes. Its solution automatically builds you a clean, on-demand, virus free, new virtual cloud based PC outside of the United States, and wipes it clean...
It’s been proven time and time again that in tech, diversity drives greater innovation, better team productivity and greater profits and market share. So what can we do in our DevOps teams to embrace diversity and help transform the culture of development and operations into a true “DevOps” team? In her session at DevOps Summit, Stefana Muller, Director, Product Management – Continuous Delivery at CA Technologies, answered that question citing examples, showing how to create opportunities for ...
What does “big enough” mean? It’s sometimes useful to argue by reductio ad absurdum. Hello, world doesn’t need to be broken down into smaller services. At the other extreme, building a monolithic enterprise resource planning (ERP) system is just asking for trouble: it’s too big, and it needs to be decomposed.
Several years ago, I was a developer in a travel reservation aggregator. Our mission was to pull flight and hotel data from a bunch of cryptic reservation platforms, and provide it to other companies via an API library - for a fee. That was before companies like Expedia standardized such things. We started with simple methods like getFlightLeg() or addPassengerName(), each performing a small, well-understood function. But our customers wanted bigger, more encompassing services that would "do ...
The pricing of tools or licenses for log aggregation can have a significant effect on organizational culture and the collaboration between Dev and Ops teams. Modern tools for log aggregation (of which Logentries is one example) can be hugely enabling for DevOps approaches to building and operating business-critical software systems. However, the pricing of an aggregated logging solution can affect the adoption of modern logging techniques, as well as organizational capabilities and cross-team ...
Culture is the most important ingredient of DevOps. The challenge for most organizations is defining and communicating a vision of beneficial DevOps culture for their organizations, and then facilitating the changes needed to achieve that. Often this comes down to an ability to provide true leadership. As a CIO, are your direct reports IT managers or are they IT leaders? The hard truth is that many IT managers have risen through the ranks based on their technical skills, not their leadership ab...
DevOps has traditionally played important roles in development and IT operations, but the practice is quickly becoming core to other business functions such as customer success, business intelligence, and marketing analytics. Modern marketers today are driven by data and rely on many different analytics tools. They need DevOps engineers in general and server log data specifically to do their jobs well. Here’s why: Server log files contain the only data that is completely full and accurate in th...
Brands are more than the sum of their brand elements – logos, colors, shapes, and the like. Brands are promises. Promises from a company to its customers that its products will deliver the value and experience customers expect. Today, digital is transforming enterprises across numerous industries. As companies become software-driven organizations, their brands transform into digital brands. But if brands are promises, then what do digital brands promise – and how do those promises differ from ...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advance...
We chat again with Jason Bloomberg, a leading industry analyst and expert on achieving digital transformation by architecting business agility in the enterprise. He writes for Forbes, Wired, TechBeacon, and his biweekly newsletter, the Cortex. As president of Intellyx, he advises business executives on their digital transformation initiatives and delivers training on Agile Architecture. His latest book is The Agile Architecture Revolution. Check out his first interview on Agile trends here.