Welcome!

Microservices Expo Authors: Elizabeth White, Yeshim Deniz, Pat Romanski, AppNeta Blog, Liz McMillan

Related Topics: Microservices Expo, Java IoT, Machine Learning

Microservices Expo: Article

HTML5 Web Sockets: A Quantum Leap in Scalability for the Web

An enormous step forward in the scalability of the real-time web

Lately there has been a lot of buzz around HTML5 Web Sockets, which defines a full-duplex communication channel that operates through a single socket over the Web. HTML5 Web Sockets is not just another incremental enhancement to conventional HTTP communications; it represents a colossal advance, especially for real-time, event-driven web applications.

HTML5 Web Sockets provides such a dramatic improvement from the old, convoluted "hacks" that are used to simulate a full-duplex connection in a browser that it prompted Google's Ian Hickson - the HTML5 specification lead - to say:

"Reducing kilobytes of data to 2 bytes...and reducing latency from 150ms to 50ms is far more than marginal. In fact, these two factors alone are enough to make Web Sockets seriously interesting to Google."

Let's look at how HTML5 Web Sockets can offer such an incredibly dramatic reduction of unnecessary network traffic and latency by comparing it to conventional solutions.

Polling, Long-Polling, and Streaming - Headache 2.0
Normally when a browser visits a web page, an HTTP request is sent to the web server that hosts that page. The web server acknowledges this request and sends back the response. In many cases - for example, for stock prices, news reports, ticket sales, traffic patterns, medical device readings, and so on - the response could be stale by the time the browser renders the page. If you want to get the most up-to-date "real-time" information, you can constantly refresh that page manually, but that's obviously not a great solution.

Current attempts to provide real-time web applications largely revolve around polling and other server-side push technologies, the most notable of which is Comet, which delays the completion of an HTTP response to deliver messages to the client. Comet-based push is generally implemented in JavaScript and uses connection strategies such as long-polling or streaming.

With polling, the browser sends HTTP requests at regular intervals and immediately receives a response. This technique was the first attempt for the browser to deliver real-time information. Obviously, this is a good solution if the exact interval of message delivery is known, because you can synchronize the client request to occur only when information is available on the server. However, real-time data is often not that predictable, making unnecessary requests inevitable and, as a result, many connections are opened and closed needlessly in low-message-rate situations.

With long-polling, the browser sends a request to the server and the server keeps the request open for a set period. If a notification is received within that period, a response containing the message is sent to the client. If a notification is not received within the set time period, the server sends a response to terminate the open request. It is important to understand, however, that when you have a high message volume, long-polling does not provide any substantial performance improvements over traditional polling. In fact, it could be worse, because the long-polling might spin out of control into an unthrottled, continuous loop of immediate polls.

With streaming, the browser sends a complete request, but the server sends and maintains an open response that is continuously updated and kept open indefinitely (or for a set period of time). The response is then updated whenever a message is ready to be sent, but the server never signals to complete the response, thus keeping the connection open to deliver future messages. However, since streaming is still encapsulated in HTTP, intervening firewalls and proxy servers may choose to buffer the response, increasing the latency of the message delivery. Therefore, many streaming Comet solutions fall back to long-polling in case a buffering proxy server is detected. Alternatively, TLS (SSL) connections can be used to shield the response from being buffered, but in that case the setup and tear down of each connection taxes the available server resources more heavily.

Ultimately, all of these methods for providing real-time data involve HTTP request and response headers, which contain lots of additional, unnecessary header data and introduce latency. On top of that, full-duplex connectivity requires more than just the downstream connection from server to client. In an effort to simulate full-duplex communication over half-duplex HTTP, many of today's solutions use two connections: one for the downstream and one for the upstream. The maintenance and coordination of these two connections introduces significant overhead in terms of resource consumption and adds lots of complexity. Simply put, HTTP wasn't designed for real-time, full-duplex communication as you can see in Figure 1, which shows the complexities associated with building a Comet web application that displays real-time data from a back-end data source using a publish/subscribe model over half-duplex HTTP.

Figure 1: The complexity of Comet applications

It gets even worse when you try to scale out those Comet solutions to the masses. Simulating bi-directional browser communication over HTTP is error-prone and complex and all that complexity does not scale. Even though your end users might be enjoying something that looks like a real-time web application, this "real-time" experience has an outrageously high price tag. It's a price that you will pay in additional latency, unnecessary network traffic, and a drag on CPU performance.

HTML5 Web Sockets to the Rescue!
Defined in the Communications section of the HTML5 specification, HTML5 Web Sockets represent the next evolution of web communications - a full-duplex, bidirectional communications channel that operates through a single socket over the Web. HTML5 Web Sockets provides a true standard that you can use to build scalable, real-time web applications. In addition, since it provides a socket that is native to the browser, it eliminates many of the problems Comet solutions are prone to. Web Sockets remove the overhead and dramatically reduce complexity.

To establish a WebSocket connection, the client and server upgrade from the HTTP protocol to the WebSocket protocol during their initial handshake, as shown in the following example:

Example 1: The WebSocket handshake (browser request and server response)

GET /text HTTP/1.1\r\n
Upgrade: WebSocket\r\n
Connection: Upgrade\r\n
Host: www.websocket.org\r\n
...\r\n

HTTP/1.1 101 WebSocket Protocol Handshake\r\n
Upgrade: WebSocket\r\n
Connection: Upgrade\r\n
...\r\n

Once established, WebSocket data frames can be sent back and forth between the client and the server in full-duplex mode. Both text and binary frames can be sent full-duplex, in either direction at the same time. The data is minimally framed with just two bytes. In the case of text frames, each frame starts with a 0x00 byte, ends with a 0xFF byte, and contains UTF-8 data in between. WebSocket text frames use a terminator, while binary frames use a length prefix.

Note: Although the Web Sockets protocol is ready to support a diverse set of clients, it cannot deliver raw binary data to JavaScript, because JavaScript does not support a byte type. Therefore, binary data is ignored if the client is JavaScript, but it can be delivered to other clients that support it.

The Showdown: Comet vs HTML5 Web Sockets
How dramatic is that reduction in unnecessary network traffic and latency? Let's compare a polling application with a WebSocket application.

For the polling example, I created a simple web application in which a web page requests real-time stock data from a RabbitMQ message broker using a traditional publish/subscribe model. It does this by polling a Java servlet that is hosted on a web server. The RabbitMQ message broker receives data from a fictitious stock price feed with continuously updating prices. The web page connects and subscribes to a specific stock channel (a topic on the message broker) and uses an XMLHttpRequest to poll for updates once per second. When updates are received, some calculations are performed and the stock data is shown in a table as shown in Figure 2.

Figure 2: A JavaScript stock ticker application

Note: The back-end stock feed actually produces a lot of stock price updates per second, so using polling at one-second intervals is actually more prudent than using a Comet long-polling solution, which would result in a series of continuous polls. Polling effectively throttles the incoming updates here.

It all looks great, but a look under the hood reveals there are some serious issues with this application. For example, in Mozilla Firefox with Firebug (a Firefox add-on that allows you to debug web pages and monitor the time it takes to load pages and execute scripts), you can see that GET requests hammer the server at one-second intervals. Turning on Live HTTP Headers (another Firefox add-on that shows live HTTP header traffic) reveals the shocking amount of header overhead that is associated with each request. The following two examples show the HTTP header data for just a single request and response:

Example 2: HTTP request header

GET /PollingStock//PollingStock HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.5) Gecko/20091102 Firefox/3.5.5
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com/PollingStock/
Cookie: showInheritedConstant=false; showInheritedProtectedConstant=false; showInheritedProperty=false; showInheritedProtectedProperty=false; showInheritedMethod=false; showInheritedProtectedMethod=false; showInheritedEvent=false; showInheritedStyle=false; showInheritedEffect=false

Example 3: HTTP response header

HTTP/1.x 200 OK
X-Powered-By: Servlet/2.5
Server: Sun Java System Application Server 9.1_02
Content-Type: text/html;charset=UTF-8
Content-Length: 21
Date: Sat, 07 Nov 2009 00:32:46 GMT

Just for fun, I counted all the characters. The total HTTP request and response header information overhead contains 871 bytes and that doesn't even include any data. Of course, this is just an example and you can have less than 871 bytes of header data, but I have also seen cases where the header data exceeded 2,000 bytes. In this example application, the data for a typical stock topic message is only about 20 characters long. As you can see, it's effectively drowned out by the excessive header information, which wasn't even required in the first place.

What happens when you deploy this application to a large number of users? Let's take a look at the network throughput for just the HTTP request and response header data associated with this polling application in three different use cases.

  • Use case A: 1,000 clients polling every second:
    Network throughput is (871 x 1,000) = 871,000 bytes = 6,968,000 bits per second (6.6 Mbps)
  • Use case B: 10,000 clients polling every second:
    Network throughput is (871 x 10,000) = 8,710,000 bytes = 69,680,000 bits per second (66 Mbps)
  • Use case C: 100,000 clients polling every 1 second:
    Network throughput is (871 x 100,000) = 87,100,000 bytes = 696,800,000 bits per second (665 Mbps)

That's an enormous amount of unnecessary network throughput. If only we could just get the essential data over the wire. Well, guess what? You can with HTML5 Web Sockets. I rebuilt the application to use HTML5 Web Sockets, adding an event handler to the web page to asynchronously listen for stock update messages from the message broker (check out the many how-tos and tutorials on www.tech.kaazing.com/documentation for more information on how to build a WebSocket application). Each of these messages is a WebSocket frame that has just two bytes of overhead (instead of 871). Take a look at how that affects the network throughput overhead in our three use cases.

  • Use case A: 1,000 clients receive 1 message per second:
    Network throughput is (2 x 1,000) = 2,000 bytes = 16,000 bits per second (0.015 Mbps)
  • Use case B: 10,000 clients receive 1 message per second:
    Network throughput is (2 x 10,000) = 20,000 bytes = 160,000 bits per second (0.153 Mbps)
  • Use case C: 100,000 clients receive 1 message per second:
    Network throughput is (2 x 100,000) = 200,000 bytes = 1,600,000 bits per second (1.526 Mbps)

As you can see in Figure 3, HTML5 Web Sockets provide a dramatic reduction of unnecessary network traffic compared to the polling solution.

Figure 3: Comparison of the unnecessary network throughput overhead between the polling and the WebSocket applications

What about the reduction in latency? Take a look at Figure 4. In the top half, you can see the latency of the half-duplex polling solution. If we assume, for this example, that it takes 50 milliseconds for a message to travel from the server to the browser, then the polling application introduces a lot of extra latency, because a new request has to be sent to the server when the response is complete. This new request takes another 50ms and during this time the server cannot send any messages to the browser, resulting in additional server memory consumption.

In the bottom half of the figure, you see the reduction in latency provided by the WebSocket solution. Once the connection is upgraded to WebSocket, messages can flow from the server to the browser the moment they arrive. It still takes 50 ms for messages to travel from the server to the browser, but the WebSocket connection remains open so there is no need to send another request to the server.

Figure 4: Latency comparison between the polling and WebSocket applications

HTML5 Web Sockets and the Kaazing WebSocket Gateway
Today, only Google's Chrome browser supports HTML5 Web Sockets natively, but other browsers will soon follow. To work around that limitation, however, Kaazing WebSocket Gateway provides complete WebSocket emulation for all the older browsers (I.E. 5.5+, Firefox 1.5+, Safari 3.0+, and Opera 9.5+), so you can start using the HTML5 WebSocket APIs today.

WebSocket is great, but what you can do once you have a full-duplex socket connection available in your browser is even greater. To leverage the full power of HTML5 Web Sockets, Kaazing provides a ByteSocket library for binary communication and higher-level libraries for protocols like Stomp, AMQP, XMPP, IRC and more, built on top of WebSocket.

For example, if you use a high-level library for protocols such as Stomp or AMQP (supplied with the Kaazing Gateway), you can talk directly to back-end message brokers like the RabbitMQ broker described in the example. By having a direct connection to services, there is no need for additional application server logic to translate those bi-directional, full-duplex TCP backend protocols to uni-directional, half-duplex HTTP connections; the browser can simply understand these protocols natively.

Figure 5: Kaazing WebSocket Gateway extends TCP-based messaging to the browser with ultra high performance

Summary
HTML5 Web Sockets provides an enormous step forward in the scalability of the real-time web. As you have seen in this article, HTML5 Web Sockets can provide a 500:1 or - depending on the size of the HTTP headers - even a 1000:1 reduction in unnecessary HTTP header traffic and 3:1 reduction in latency. That is not just an incremental improvement; that is a revolutionary jump - a quantum leap.

Kaazing WebSocket Gateway makes HTML5 WebSocket code work in all the browsers today, while providing additional protocol libraries that allow you to harness the full power of the full-duplex socket connection that HTML5 Web Sockets provides and communicate directly to back-end services. For more information about Kaazing WebSocket Gateway, visit www.kaazing.com and the Kaazing technology network at tech.kaazing.com.

References

More Stories By Peter Lubbers

Peter Lubbers is the Director of Documentation and Training at Kaazing where he oversees all aspects of documentation and training. He is the co-author of the Apress book Pro HTML5 Programming and teaches HTML5 training courses. An HTML5 and WebSocket enthusiast, Peter frequently speaks at international events.

Prior to joining Kaazing, Peter worked as an information architect at Oracle, where he wrote many books. He also develops documentation automation solutions and two of his inventions are patented.

A native of the Netherlands, Peter served as a Special Forces commando in the Royal Dutch Green Berets. In his spare time (ha!) Peter likes to run ultra-marathons. He is the 2007 and 2009 ultrarunner.net series champion and three-time winner of the Tahoe Super Triple marathon. Peter lives on the edge of the Tahoe National Forest and loves to run in the Sierra Nevada foothills and around Lake Tahoe (preferably in one go!).

More Stories By Frank Greco

Frank Greco is the founder of the New York Java Special Interest Group (NYJavaSIG), one of the largest Java Users Groups (JUGs) on the planet with over 8,000 active members in the local Java community. The NYJavaSIG has had some of the most famous Java luminaries speak at their meetings, including Java Champions Brian Goetz, Rod Johnson, Doug Lea and Josh Bloch. Their members are very enthusiastic and, like most New Yorkers, don't hesitate to ask tough questions of their monthly speakers.

Frank has a long history as a "Champion" of the Java Platform; he taught a developer track session at the very first Java Day back in September 1995 in New York and started the NYJavaSIG that afternoon. Frank has been involved with software development for over 10 years and has worked on sophisticated architectures, innovative user interfaces, mobile computing and next-generation collaborative financial systems. Frank is both a Java community leader as well as a luminary technologist specializing in cloud services and enterprise architectures.

Comments (2) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
PeterLubbers 03/15/10 03:55:00 PM EDT

Thanks Tam!
Sorry about that error in use case B and C. You're right it should be in Mbps. I'll try to get the article updated. Thanks for pointing that out.

An additional problem with streaming is that you can get unexpected results if there are intermediaries such as buffering proxy servers in the way. Streaming solutions therefore often fall back to long-polling if they detect such intermediaries (if they are smart enough to detect them at all). With WebSocket and WebSocket secure you have a better chance of traversing proxy servers and firewalls.

tbayes 03/11/10 10:11:00 AM EST

Hi Peter and Frank,

Thank you for this clear and well-written article, which does much to effectively explain the benefits of the WebSocket protocol.

If I may point out one minor correction: In the WebSocket section of Example 3, Use case B and C should show overhead rates of 0.153Mbps and 1.526Mbps respectively, as opposed to 0.153Kbps and 1.526Kbps.

Perhaps a more natural comparison would be between Web Sockets and Comet-streaming (via, for example, the "Forever IFrame" technique), as I feel it a little unsporting to compare Web Sockets directly to polling or long-polling! At around 20 bytes per message, the overhead associated with clients receiving messages via Comet-style streaming is still more than WebSocket's 2 bytes per message, but is still one to two orders of magnitude less than the overhead associated with polling techniques. Similarly, latency whether receiving messages using Comet-streaming or WebSocket is the same. Of course, clients sending messages will gain the advantages you describe only with Web Sockets, as all other approaches do indeed require new HTTP requests.

I completely agree, however, that WebSocket is a definite improvement over the Comet IFrame-approaches, which have an air of string and glue about them.

You mention your usage of various JavaScript APIs built on top of Web Sockets - such as your AmqpClient, or StompClient. This is understandable, since while the WebSocket API is commendably simple, it lacks many useful features. These APIs provide additional functionality, and do not explicitly expose the raw, underlying WebSocket API. We agree with this approach, and having implemented WebSocket interfaces in our Nirvana messaging server, we have opted to retain an existing, feature-rich and robust messaging JavaScript API unchanged except for its support for underlying WebSocket communication. See this link for more details.

I hope that we will see WebSocket support in all production mainstream browsers very soon.

Tam

@MicroservicesExpo Stories
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm.
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In his Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, will explore t...
In recent years, containers have taken the world by storm. Companies of all sizes and industries have realized the massive benefits of containers, such as unprecedented mobility, higher hardware utilization, and increased flexibility and agility; however, many containers today are non-persistent. Containers without persistence miss out on many benefits, and in many cases simply pass the responsibility of persistence onto other infrastructure, adding additional complexity.
Everyone wants to use containers, but monitoring containers is hard. New ephemeral architecture introduces new challenges in how monitoring tools need to monitor and visualize containers, so your team can make sense of everything. In his session at @DevOpsSummit, David Gildeh, co-founder and CEO of Outlyer, will go through the challenges and show there is light at the end of the tunnel if you use the right tools and understand what you need to be monitoring to successfully use containers in your...
The IT industry is undergoing a significant evolution to keep up with cloud application demand. We see this happening as a mindset shift, from traditional IT teams to more well-rounded, cloud-focused job roles. The IT industry has become so cloud-minded that Gartner predicts that by 2020, this cloud shift will impact more than $1 trillion of global IT spending. This shift, however, has left some IT professionals feeling a little anxious about what lies ahead. The good news is that cloud computin...
What if you could build a web application that could support true web-scale traffic without having to ever provision or manage a single server? Sounds magical, and it is! In his session at 20th Cloud Expo, Chris Munns, Senior Developer Advocate for Serverless Applications at Amazon Web Services, will show how to build a serverless website that scales automatically using services like AWS Lambda, Amazon API Gateway, and Amazon S3. We will review several frameworks that can help you build serverle...
Culture is the most important ingredient of DevOps. The challenge for most organizations is defining and communicating a vision of beneficial DevOps culture for their organizations, and then facilitating the changes needed to achieve that. Often this comes down to an ability to provide true leadership. As a CIO, are your direct reports IT managers or are they IT leaders? The hard truth is that many IT managers have risen through the ranks based on their technical skills, not their leadership abi...
The essence of cloud computing is that all consumable IT resources are delivered as services. In his session at 15th Cloud Expo, Yung Chou, Technology Evangelist at Microsoft, demonstrated the concepts and implementations of two important cloud computing deliveries: Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). He discussed from business and technical viewpoints what exactly they are, why we care, how they are different and in what ways, and the strategies for IT to transi...
Thanks to Docker and the DevOps revolution, microservices have emerged as the new way to build and deploy applications — and there are plenty of great reasons to embrace the microservices trend. If you are going to adopt microservices, you also have to understand that microservice architectures have many moving parts. When it comes to incident management, this presents an important difference between microservices and monolithic architectures. More moving parts mean more complexity to monitor an...
SYS-CON Events announced today that HTBase will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. HTBase (Gartner 2016 Cool Vendor) delivers a Composable IT infrastructure solution architected for agility and increased efficiency. It turns compute, storage, and fabric into fluid pools of resources that are easily composed and re-composed to meet each application’s needs. With HTBase, companies can quickly prov...
Microservices (μServices) are a fascinating evolution of the Distributed Object Computing (DOC) paradigm. Initial design of DOC attempted to solve the problem of simplifying developing complex distributed applications by applying object-oriented design principles to disparate components operating across networked infrastructure. In this model, DOC “hid” the complexity of making this work from the developer regardless of the deployment architecture through the use of complex frameworks, such as C...
As Enterprise business moves from Monoliths to Microservices, adoption and successful implementations of Microservices become more evident. The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Documenting hurdles and problems for the use of Microservices will help consultants, architects and specialists to avoid repeating the same mistakes and learn how and when to use (or not use) Microservices at the enterprise level. The circumstance w...
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend @CloudExpo | @ThingsExpo, June 6-8, 2017, at the Javits Center in New York City, NY and October 31 - November 2, 2017, Santa Clara Convention Center, CA. Learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
@DevOpsSummit at Cloud taking place June 6-8, 2017, at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long developm...
In his General Session at 16th Cloud Expo, David Shacochis, host of The Hybrid IT Files podcast and Vice President at CenturyLink, investigated three key trends of the “gigabit economy" though the story of a Fortune 500 communications company in transformation. Narrating how multi-modal hybrid IT, service automation, and agile delivery all intersect, he will cover the role of storytelling and empathy in achieving strategic alignment between the enterprise and its information technology.
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service.
All organizations that did not originate this moment have a pre-existing culture as well as legacy technology and processes that can be more or less amenable to DevOps implementation. That organizational culture is influenced by the personalities and management styles of Executive Management, the wider culture in which the organization is situated, and the personalities of key team members at all levels of the organization. This culture and entrenched interests usually throw a wrench in the work...
As software becomes more and more complex, we, as software developers, have been splitting up our code into smaller and smaller components. This is also true for the environment in which we run our code: going from bare metal, to VMs to the modern-day Cloud Native world of containers, schedulers and micro services. While we have figured out how to run containerized applications in the cloud using schedulers, we've yet to come up with a good solution to bridge the gap between getting your contain...
TechTarget storage websites are the best online information resource for news, tips and expert advice for the storage, backup and disaster recovery markets. By creating abundant, high-quality editorial content across more than 140 highly targeted technology-specific websites, TechTarget attracts and nurtures communities of technology buyers researching their companies' information technology needs. By understanding these buyers' content consumption behaviors, TechTarget creates the purchase inte...