Microservices Expo Authors: ManageEngine IT Matters, Pat Romanski, Elizabeth White, Kevin Jackson, Yeshim Deniz

Related Topics: Microservices Expo, Java IoT

Microservices Expo: Blog Feed Post

How to Safely Publish Internal Services to the Outside World

Most organizations buffer their contact with the outside world using a DMZ

Security Journal on Ulitzer

So you’ve bought into the idea of service-orientation. Congratulations. You’ve begun to create services throughout your internal corporate network. Some of these run on .NET servers; others are Java services; still others are Ruby-on-Rails—in fact, one day you woke up and discovered you even have a mainframe service to manage. But the question you face now is this: how can all of these services be made available to consumers on the Internet? And more important, how can you do it securely?

Most organizations buffer their contact with the outside world using a DMZ. Externally facing systems, such as web servers, live in the DMZ. They mediate access to internal resources, implementing—well, hopefully implementing—a restrictive security model. The DMZ exists to create a security air gap between protocols. The idea is that any system deployed into the DMZ is hardened, resilient, and publishes a highly constrained API (in most cases, a web form). To access internal resources, you have to go through this DMZ-based system, and this system provides a restricted view of the back-end applications and data that it fronts.

The DMZ represents a challenge for publishing services. If services reside on internal systems, how can external clients get through the DMZ and access the service?

Clearly, you can’t simply start poking holes in firewall #2 to allow external systems to access your internal providers directly; this would defeat the entire purpose of the DMZ security model. But this is exactly what some vendors advocate. They propose that you implement local security agents that integrate into the container of the internal service provider. These agents implement policy-based security—essentially taking on the processing burden of authentication, authorization, audit, confidentiality, integrity and key management. While this may seem attractive, as it does decouple security into a purpose-built policy layer, it has some very significant drawbacks. The agent model essentially argues that once the internal policy layer is in place, the internal service provider is ready for external publication. But this implies poking holes in the DMZ, which is a bad security practice.  We have firewalls precicely because we don’t want to harden every internal system to DMZ-class resiliancy. An application-layer policy agent does nothing to defeat OS-targetted attacks, which means every service provider would need to be sufficiently locked down and maintained. This becomes unmanagable as the server volume grows, and completely erodes the integrity of firewall #2.

Furthermore, in practice, agents  just don’t scale well. Distribution of policy among a large number of distributed agents is a difficult problem to solve. Policies rapidly become unsynchronized, and internal security practices are often compromised just to get this ponderous and dependent system to work.

At Layer 7 we advocate a different approach to publishing services that is both scalable and secure. Our flagship product, the SecureSpan Gateway, is a security proxy for Web services, REST, and arbitrary XML and binary transactions. It is a hardened hardware or virtual appliance that can be safely deployed in the DMZ to govern all access to internal services. It acts as the border guard, ensuring that each transaction going in or out of the internal network conforms to corporate policy.

SecureSpan Gateways act as a policy air-gap that constrains access to back end services through a rich policy-based security model. This integrates consistently with the design philosophy of the DMZ. Appliances are hardened so they can withstand Internet-launched attacks, and optimized so they can scale to enormous traffic loads. We built full clustering into SecureSpan in the first version we released, close to eight years ago. This ensures that there is no single point of failure, and that systems can be added to accommodate increasing loads.

The separate policy layer—and the policy language that defines this—is the key to the security model and is best illustrated using a real example. Suppose I have a warehouse service in my internal network that I would like to make available to my distributors. The warehouse service has a number of simple operations, such as inventory queries and the ability to place an order. I’ll publish this to the outside world through a SecureSpan Gateway residing in the DMZ, exactly as shown in the diagram above.

SecureSpan provides a management console used to build the policies that govern access to each service. Construction of the initial policy is made simple using a wizard that bootstraps the process using the WSDL, which is a formal service description for my warehouse service. The wizards allows me to create a basic policy in three simple steps. First, I load the WSDL:

Next, I declare a basic security model. I’ll keep this simple, and just use SSL for confidentiality, integrity, and server authentication. HTTP basic authentication will carry the credentials, and I’ll only authorize access to myself:

If this policy sounds familiar, it’s because it’s the security model for most web sites. It turns out that this is a reasonable model for many XML-based Web services as well.

Finally, I’ll define a proxy routing to get to my internal service, and an access control model once there. In this example, I will just use a general account. Under this model, the service trusts the SecureSpan Gateway to authenticate and authorize users on it’s behalf:

You may have noticed that this assumes that the warehouse services doesn’t need to know the identity of the original requester-—that is, Scott. If the service did need this, there are a number of ways to communicate my identity claim downstream to the service, using techniques like SAML, IBM’s Trust Association Interceptor (TAI), proxied credentials, or various other tricks that I won’t cover here.

The wizard generates a simple policy for me that articulates my simple, web-oriented security model. Here’s what this policy looks like in the SecureSpan management console:

Policy is made up of individual assertions. These encapsulate all of the parameters that make up that operation. When a message for the warehouse service is identified, SecureSpan loads and executes the assertions in this policy, from top to bottom. Essentially, policy is an algorithm, with all of the classic elements of flow control. SecureSpan represents this graphically to make the policy simple to compose and understand. However, policy can also be rendered as an XML-based WS-Policy document. In fact, if you copy a block of graphical assertions into a text editor, they resolve as XML. Similarily, you can paste XML snippets into the policy composer and they appear as graphical assertion elements.

This policy is pretty simplistic, but it’s a good foundation to build on. I’ll add some elements that further restrict transactions and thus constrain access to the back end system the SecureSpan Gateway is protecting.

The rate limit assertion allows me to cap the number of transactions getting through to the back end. I can put an absolute quota on the throughput: say, 30,000 transaction/sec because I know that the warehouse service begins to fail once traffic exceeds this volume. But suppose I was having a problem with individual suppliers overusing particular services. I could limit use by an individual identity (as defined by an authenticated user or originating IP address) to 5,000 transasctions/sec—still a lot, but leaving headroom for other trading partners. The rate limit assertion gives me this flexibility. Here is its detailed view:

Note that if I get 5,001 transactions from a user in one second, I will buffer the last transaction until the rate drops in a subsequent time window (subject, of course, to resource availability on the gateway). This provides me with application-layer traffic shaping that is essential in industries like telco, who use this assertion extensively.

I would also like to evaluate each new transaction for threats. SecureSpan has assertions that cover a range of familar threats, such as SQL-injection (which has been around for a long time, but has become newly relevant in the SOA world), as well as a long list of new XML attacks that attempt to exploit parser infrastructure and autogenerated code. For the warehouse service, I’m concerned about code-injection attacks. Fortunately, there’s an assertion for that:

Here’s what these two assertions look like dropped into the policy:

This policy was simple to compose (especially since we had the wizard to help us). But it is also very effective. It’s a visible and understandable, which is an important and often overlooked aspect of security tooling. SOA security suffers from an almost byzantine complexity. It is much too easy to build a security model that obscures weakness behind its detail. One of the design goals we had at Layer 7 for SecureSpan was to make it easy to do the simple things that challenge us 80% of the time. However, we also wanted to provide the richness to solve the difficult problems that make up the other 20%. These are problems such as adaptation. They are the obscure impedance-mismatches between client and server security models, or fast run-time adaptation of message content to accommodate version mismatches.

In this example, it took only seven simple assertions to build a basic security policy for publishing services to the outside world. Fortunately, there are over 100 other assertions—covering everything from message-based security to transports like FTP to orchestration—that are there when you need to solve the tougher problems.

Read the original blog entry...

More Stories By Scott Morrison

K. Scott Morrison is the Chief Technology Officer and Chief Architect at Layer 7 Technologies, where he is leading a team developing the next generation of security infrastructure for cloud computing and SOA. An architect and developer of highly scalable, enterprise systems for over 20 years, Scott has extensive experience across industry sectors as diverse as health, travel and transportation, and financial services. He has been a Director of Architecture and Technology at Infowave Software, a leading maker of wireless security and acceleration software for mobile devices, and was a senior architect at IBM. Before shifting to the private sector, Scott was with the world-renowned medical research program of the University of British Columbia, studying neurodegenerative disorders using medical imaging technology.

Scott is a dynamic, entertaining and highly sought-after speaker. His quotes appear regularly in the media, from the New York Times, to the Huffington Post and the Register. Scott has published over 50 book chapters, magazine articles, and papers in medical, physics, and engineering journals. His work has been acknowledged in the New England Journal of Medicine, and he has published in journals as diverse as the IEEE Transactions on Nuclear Science, the Journal of Cerebral Blood Flow, and Neurology. He is the co-author of the graduate text Cloud Computing, Principles, Systems and Applications published by Springer, and is on the editorial board of Springer’s new Journal of Cloud Computing Advances, Systems and Applications (JoCCASA). He co-authored both Java Web Services Unleashed and Professional JMS. Scott is an editor of the WS-I Basic Security Profile (BSP), and is co-author of the original WS-Federation specification. He is a recent co-author of the Cloud Security Alliance’s Security Guidance for Critical Areas of Focus in Cloud Computing, and an author of that organization’s Top Threats to Cloud Computing research. Scott was recently a featured speaker for the Privacy Commission of Canada’s public consultation into the privacy implications of cloud computing. He has even lent his expertise to the film and television industry, consulting on a number of features including the X-Files. Scott’s current interests are in cloud computing, Web services security, enterprise architecture and secure mobile computing—and of course, his wife and two great kids.

Layer 7 Technologies: http://www.layer7tech.com
Scott's linkedIn profile.
Twitter: @KScottMorrison
Syscon blog: http://scottmorrison.sys-con.com

@MicroservicesExpo Stories
The reality of data ubiquity is here—data is buried in operational statistics, machine logs, stacks of overflowing tickets and customer details, among other things. How can any user get valuable information amid this rapid influx of data? Imagine a situation where your firm’s revenue takes a hit owing to an unexpected failure in some business process. It would be a nightmare for IT admins to sift through the interminable piles of data to deduce exactly why and where the problem occurred. To sav...
"Tintri focuses on the Ops side of the DevOps, which basically is pushing more and more of the accessibility of the infrastructure to the developers and trying to get behind the scenes," explained Dhiraj Sehgal of Tintri in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
What's the role of an IT self-service portal when you get to continuous delivery and Infrastructure as Code? This general session showed how to create the continuous delivery culture and eight accelerators for leading the change. Don Demcsak is a DevOps and Cloud Native Modernization Principal for Dell EMC based out of New Jersey. He is a former, long time, Microsoft Most Valuable Professional, specializing in building and architecting Application Delivery Pipelines for hybrid legacy, and cloud ...
21st International Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Me...
"We are a monitoring company. We work with Salesforce, BBC, and quite a few other big logos. We basically provide monitoring for them, structure for their cloud services and we fit into the DevOps world" explained David Gildeh, Co-founder and CEO of Outlyer, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Cloud Expo, Inc. has announced today that Andi Mann and Aruna Ravichandran have been named Co-Chairs of @DevOpsSummit at Cloud Expo Silicon Valley which will take place Oct. 31-Nov. 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. "DevOps is at the intersection of technology and business-optimizing tools, organizations and processes to bring measurable improvements in productivity and profitability," said Aruna Ravichandran, vice president, DevOps product and solutions marketing...
There's a lot to gain from cloud computing, but success requires a thoughtful and enterprise focused approach. Cloud computing decouples data and information from the infrastructure on which it lies. A process that is a LOT more involved than dragging some folders from your desktop to a shared drive. Cloud computing as a mission transformation activity, not a technological one. As an organization moves from local information hosting to the cloud, one of the most important challenges is addressi...
SYS-CON Events announced today that CA Technologies has been named "Platinum Sponsor" of SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business - from apparel to energy - is being rewritten by software. From planning to development to management to security, CA creates software that fuels transformation for companies in the applic...
In the decade following his article, cloud computing further cemented Carr’s perspective. Compute, storage, and network resources have become simple utilities, available at the proverbial turn of the faucet. The value they provide is immense, but the cloud playing field is amazingly level. Carr’s quote above presaged the cloud to a T. Today, however, we’re in the digital era. Mark Andreesen’s ‘software is eating the world’ prognostication is coming to pass, as enterprises realize they must be...
Both SaaS vendors and SaaS buyers are going “all-in” to hyperscale IaaS platforms such as AWS, which is disrupting the SaaS value proposition. Why should the enterprise SaaS consumer pay for the SaaS service if their data is resident in adjacent AWS S3 buckets? If both SaaS sellers and buyers are using the same cloud tools, automation and pay-per-transaction model offered by IaaS platforms, then why not host the “shrink-wrapped” software in the customers’ cloud? Further, serverless computing, cl...
Hybrid IT is today’s reality, and while its implementation may seem daunting at times, more and more organizations are migrating to the cloud. In fact, according to SolarWinds 2017 IT Trends Index: Portrait of a Hybrid IT Organization 95 percent of organizations have migrated crucial applications to the cloud in the past year. As such, it’s in every IT professional’s best interest to know what to expect.
A common misconception about the cloud is that one size fits all. Companies expecting to run all of their operations using one cloud solution or service must realize that doing so is akin to forcing the totality of their business functionality into a straightjacket. Unlocking the full potential of the cloud means embracing the multi-cloud future where businesses use their own cloud, and/or clouds from different vendors, to support separate functions or product groups. There is no single cloud so...
The taxi industry never saw Uber coming. Startups are a threat to incumbents like never before, and a major enabler for startups is that they are instantly “cloud ready.” If innovation moves at the pace of IT, then your company is in trouble. Why? Because your data center will not keep up with frenetic pace AWS, Microsoft and Google are rolling out new capabilities. In his session at 20th Cloud Expo, Don Browning, VP of Cloud Architecture at Turner, posited that disruption is inevitable for comp...
Companies have always been concerned that traditional enterprise software is slow and complex to install, often disrupting critical and time-sensitive operations during roll-out. With the growing need to integrate new digital technologies into the enterprise to transform business processes, this concern has become even more pressing. A 2016 Panorama Consulting Solutions study revealed that enterprise resource planning (ERP) projects took an average of 21 months to install, with 57 percent of th...
In 2014, Amazon announced a new form of compute called Lambda. We didn't know it at the time, but this represented a fundamental shift in what we expect from cloud computing. Now, all of the major cloud computing vendors want to take part in this disruptive technology. In his session at 20th Cloud Expo, Doug Vanderweide, an instructor at Linux Academy, discussed why major players like AWS, Microsoft Azure, IBM Bluemix, and Google Cloud Platform are all trying to sidestep VMs and containers wit...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists examined how DevOps helps to meet the de...
"When we talk about cloud without compromise what we're talking about is that when people think about 'I need the flexibility of the cloud' - it's the ability to create applications and run them in a cloud environment that's far more flexible,” explained Matthew Finnie, CTO of Interoute, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Colocation is a central pillar of modern enterprise infrastructure planning because it provides greater control, insight, and performance than managed platforms. In spite of the inexorable rise of the cloud, most businesses with extensive IT hardware requirements choose to host their infrastructure in colocation data centers. According to a recent IDC survey, more than half of the businesses questioned use colocation services, and the number is even higher among established businesses and busine...