Microservices Expo Authors: Carmen Gonzalez, Derek Weeks, TJ Randall, David Sprott, Liz McMillan

Related Topics: Microservices Expo, Java IoT

Microservices Expo: Blog Feed Post

How to Safely Publish Internal Services to the Outside World

Most organizations buffer their contact with the outside world using a DMZ

Security Journal on Ulitzer

So you’ve bought into the idea of service-orientation. Congratulations. You’ve begun to create services throughout your internal corporate network. Some of these run on .NET servers; others are Java services; still others are Ruby-on-Rails—in fact, one day you woke up and discovered you even have a mainframe service to manage. But the question you face now is this: how can all of these services be made available to consumers on the Internet? And more important, how can you do it securely?

Most organizations buffer their contact with the outside world using a DMZ. Externally facing systems, such as web servers, live in the DMZ. They mediate access to internal resources, implementing—well, hopefully implementing—a restrictive security model. The DMZ exists to create a security air gap between protocols. The idea is that any system deployed into the DMZ is hardened, resilient, and publishes a highly constrained API (in most cases, a web form). To access internal resources, you have to go through this DMZ-based system, and this system provides a restricted view of the back-end applications and data that it fronts.

The DMZ represents a challenge for publishing services. If services reside on internal systems, how can external clients get through the DMZ and access the service?

Clearly, you can’t simply start poking holes in firewall #2 to allow external systems to access your internal providers directly; this would defeat the entire purpose of the DMZ security model. But this is exactly what some vendors advocate. They propose that you implement local security agents that integrate into the container of the internal service provider. These agents implement policy-based security—essentially taking on the processing burden of authentication, authorization, audit, confidentiality, integrity and key management. While this may seem attractive, as it does decouple security into a purpose-built policy layer, it has some very significant drawbacks. The agent model essentially argues that once the internal policy layer is in place, the internal service provider is ready for external publication. But this implies poking holes in the DMZ, which is a bad security practice.  We have firewalls precicely because we don’t want to harden every internal system to DMZ-class resiliancy. An application-layer policy agent does nothing to defeat OS-targetted attacks, which means every service provider would need to be sufficiently locked down and maintained. This becomes unmanagable as the server volume grows, and completely erodes the integrity of firewall #2.

Furthermore, in practice, agents  just don’t scale well. Distribution of policy among a large number of distributed agents is a difficult problem to solve. Policies rapidly become unsynchronized, and internal security practices are often compromised just to get this ponderous and dependent system to work.

At Layer 7 we advocate a different approach to publishing services that is both scalable and secure. Our flagship product, the SecureSpan Gateway, is a security proxy for Web services, REST, and arbitrary XML and binary transactions. It is a hardened hardware or virtual appliance that can be safely deployed in the DMZ to govern all access to internal services. It acts as the border guard, ensuring that each transaction going in or out of the internal network conforms to corporate policy.

SecureSpan Gateways act as a policy air-gap that constrains access to back end services through a rich policy-based security model. This integrates consistently with the design philosophy of the DMZ. Appliances are hardened so they can withstand Internet-launched attacks, and optimized so they can scale to enormous traffic loads. We built full clustering into SecureSpan in the first version we released, close to eight years ago. This ensures that there is no single point of failure, and that systems can be added to accommodate increasing loads.

The separate policy layer—and the policy language that defines this—is the key to the security model and is best illustrated using a real example. Suppose I have a warehouse service in my internal network that I would like to make available to my distributors. The warehouse service has a number of simple operations, such as inventory queries and the ability to place an order. I’ll publish this to the outside world through a SecureSpan Gateway residing in the DMZ, exactly as shown in the diagram above.

SecureSpan provides a management console used to build the policies that govern access to each service. Construction of the initial policy is made simple using a wizard that bootstraps the process using the WSDL, which is a formal service description for my warehouse service. The wizards allows me to create a basic policy in three simple steps. First, I load the WSDL:

Next, I declare a basic security model. I’ll keep this simple, and just use SSL for confidentiality, integrity, and server authentication. HTTP basic authentication will carry the credentials, and I’ll only authorize access to myself:

If this policy sounds familiar, it’s because it’s the security model for most web sites. It turns out that this is a reasonable model for many XML-based Web services as well.

Finally, I’ll define a proxy routing to get to my internal service, and an access control model once there. In this example, I will just use a general account. Under this model, the service trusts the SecureSpan Gateway to authenticate and authorize users on it’s behalf:

You may have noticed that this assumes that the warehouse services doesn’t need to know the identity of the original requester-—that is, Scott. If the service did need this, there are a number of ways to communicate my identity claim downstream to the service, using techniques like SAML, IBM’s Trust Association Interceptor (TAI), proxied credentials, or various other tricks that I won’t cover here.

The wizard generates a simple policy for me that articulates my simple, web-oriented security model. Here’s what this policy looks like in the SecureSpan management console:

Policy is made up of individual assertions. These encapsulate all of the parameters that make up that operation. When a message for the warehouse service is identified, SecureSpan loads and executes the assertions in this policy, from top to bottom. Essentially, policy is an algorithm, with all of the classic elements of flow control. SecureSpan represents this graphically to make the policy simple to compose and understand. However, policy can also be rendered as an XML-based WS-Policy document. In fact, if you copy a block of graphical assertions into a text editor, they resolve as XML. Similarily, you can paste XML snippets into the policy composer and they appear as graphical assertion elements.

This policy is pretty simplistic, but it’s a good foundation to build on. I’ll add some elements that further restrict transactions and thus constrain access to the back end system the SecureSpan Gateway is protecting.

The rate limit assertion allows me to cap the number of transactions getting through to the back end. I can put an absolute quota on the throughput: say, 30,000 transaction/sec because I know that the warehouse service begins to fail once traffic exceeds this volume. But suppose I was having a problem with individual suppliers overusing particular services. I could limit use by an individual identity (as defined by an authenticated user or originating IP address) to 5,000 transasctions/sec—still a lot, but leaving headroom for other trading partners. The rate limit assertion gives me this flexibility. Here is its detailed view:

Note that if I get 5,001 transactions from a user in one second, I will buffer the last transaction until the rate drops in a subsequent time window (subject, of course, to resource availability on the gateway). This provides me with application-layer traffic shaping that is essential in industries like telco, who use this assertion extensively.

I would also like to evaluate each new transaction for threats. SecureSpan has assertions that cover a range of familar threats, such as SQL-injection (which has been around for a long time, but has become newly relevant in the SOA world), as well as a long list of new XML attacks that attempt to exploit parser infrastructure and autogenerated code. For the warehouse service, I’m concerned about code-injection attacks. Fortunately, there’s an assertion for that:

Here’s what these two assertions look like dropped into the policy:

This policy was simple to compose (especially since we had the wizard to help us). But it is also very effective. It’s a visible and understandable, which is an important and often overlooked aspect of security tooling. SOA security suffers from an almost byzantine complexity. It is much too easy to build a security model that obscures weakness behind its detail. One of the design goals we had at Layer 7 for SecureSpan was to make it easy to do the simple things that challenge us 80% of the time. However, we also wanted to provide the richness to solve the difficult problems that make up the other 20%. These are problems such as adaptation. They are the obscure impedance-mismatches between client and server security models, or fast run-time adaptation of message content to accommodate version mismatches.

In this example, it took only seven simple assertions to build a basic security policy for publishing services to the outside world. Fortunately, there are over 100 other assertions—covering everything from message-based security to transports like FTP to orchestration—that are there when you need to solve the tougher problems.

Read the original blog entry...

More Stories By Scott Morrison

K. Scott Morrison is the Chief Technology Officer and Chief Architect at Layer 7 Technologies, where he is leading a team developing the next generation of security infrastructure for cloud computing and SOA. An architect and developer of highly scalable, enterprise systems for over 20 years, Scott has extensive experience across industry sectors as diverse as health, travel and transportation, and financial services. He has been a Director of Architecture and Technology at Infowave Software, a leading maker of wireless security and acceleration software for mobile devices, and was a senior architect at IBM. Before shifting to the private sector, Scott was with the world-renowned medical research program of the University of British Columbia, studying neurodegenerative disorders using medical imaging technology.

Scott is a dynamic, entertaining and highly sought-after speaker. His quotes appear regularly in the media, from the New York Times, to the Huffington Post and the Register. Scott has published over 50 book chapters, magazine articles, and papers in medical, physics, and engineering journals. His work has been acknowledged in the New England Journal of Medicine, and he has published in journals as diverse as the IEEE Transactions on Nuclear Science, the Journal of Cerebral Blood Flow, and Neurology. He is the co-author of the graduate text Cloud Computing, Principles, Systems and Applications published by Springer, and is on the editorial board of Springer’s new Journal of Cloud Computing Advances, Systems and Applications (JoCCASA). He co-authored both Java Web Services Unleashed and Professional JMS. Scott is an editor of the WS-I Basic Security Profile (BSP), and is co-author of the original WS-Federation specification. He is a recent co-author of the Cloud Security Alliance’s Security Guidance for Critical Areas of Focus in Cloud Computing, and an author of that organization’s Top Threats to Cloud Computing research. Scott was recently a featured speaker for the Privacy Commission of Canada’s public consultation into the privacy implications of cloud computing. He has even lent his expertise to the film and television industry, consulting on a number of features including the X-Files. Scott’s current interests are in cloud computing, Web services security, enterprise architecture and secure mobile computing—and of course, his wife and two great kids.

Layer 7 Technologies: http://www.layer7tech.com
Scott's linkedIn profile.
Twitter: @KScottMorrison
Syscon blog: http://scottmorrison.sys-con.com

@MicroservicesExpo Stories
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
What do dependency resolution, situational awareness, and superheroes have in common? Meet Chris Corriere, a DevOps/Software Engineer at Autotrader, speaking on creative ways to maximize usage of all of the above. Mark Miller, Community Advocate and senior storyteller at Sonatype, caught up with Chris to learn more about what his team is up to.
At its core DevOps is all about collaboration. The lines of communication must be opened and it takes some effort to ensure that they stay that way. It’s easy to pay lip service to trends and talk about implementing new methodologies, but without action, real benefits cannot be realized. Success requires planning, advocates empowered to effect change, and, of course, the right tooling. To bring about a cultural shift it’s important to share challenges. In simple terms, ensuring that everyone k...
Right off the bat, Newman advises that we should "think of microservices as a specific approach for SOA in the same way that XP or Scrum are specific approaches for Agile Software development". These analogies are very interesting because my expectation was that microservices is a pattern. So I might infer that microservices is a set of process techniques as opposed to an architectural approach. Yet in the book, Newman clearly includes some elements of concept model and architecture as well as p...
Without lifecycle traceability and visibility across the tool chain, stakeholders from Planning-to-Ops have limited insight and answers to who, what, when, why and how across the DevOps lifecycle. This impacts the ability to deliver high quality software at the needed velocity to drive positive business outcomes. In his general session at @DevOpsSummit at 19th Cloud Expo, Eric Robertson, General Manager at CollabNet, will discuss how customers are able to achieve a level of transparency that e...
SYS-CON Events announced today that SoftNet Solutions will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. SoftNet Solutions specializes in Enterprise Solutions for Hadoop and Big Data. It offers customers the most open, robust, and value-conscious portfolio of solutions, services, and tools for the shortest route to success with Big Data. The unique differentiator is the ability to architect and ...
With emerging ideas, innovation, and talents, the lines between DevOps, release engineering, and even security are rapidly blurring. I invite you to sit down for a moment with Principle Consultant, J. Paul Reed, and listen to his take on what the intersection between these once individualized fields entails, and may even foreshadow.
In his session at 19th Cloud Expo, Claude Remillard, Principal Program Manager in Developer Division at Microsoft, will contrast how his team used config as code and immutable patterns for continuous delivery of microservices and apps to the cloud. He will show the immutable patterns helps developers do away with most of the complexity of config as code-enabling scenarios such as rollback, zero downtime upgrades with far greater simplicity. He will also have live demos of building immutable pipe...
A completely new computing platform is on the horizon. They’re called Microservers by some, ARM Servers by others, and sometimes even ARM-based Servers. No matter what you call them, Microservers will have a huge impact on the data center and on server computing in general. Although few people are familiar with Microservers today, their impact will be felt very soon. This is a new category of computing platform that is available today and is predicted to have triple-digit growth rates for some ...
SYS-CON Events announced today that Transparent Cloud Computing (T-Cloud) Consortium will exhibit at the 19th International Cloud Expo®, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. The Transparent Cloud Computing Consortium (T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data proces...
When we talk about the impact of BYOD and BYOA and the Internet of Things, we often focus on the impact on data center architectures. That's because there will be an increasing need for authentication, for access control, for security, for application delivery as the number of potential endpoints (clients, devices, things) increases. That means scale in the data center. What we gloss over, what we skip, is that before any of these "things" ever makes a request to access an application it had to...
Virgil consists of an open-source encryption library, which implements Cryptographic Message Syntax (CMS) and Elliptic Curve Integrated Encryption Scheme (ECIES) (including RSA schema), a Key Management API, and a cloud-based Key Management Service (Virgil Keys). The Virgil Keys Service consists of a public key service and a private key escrow service. 

Apache Hadoop is a key technology for gaining business insights from your Big Data, but the penetration into enterprises is shockingly low. In fact, Apache Hadoop and Big Data proponents recognize that this technology has not yet achieved its game-changing business potential. In his session at 19th Cloud Expo, John Mertic, director of program management for ODPi at The Linux Foundation, will explain why this is, how we can work together as an open data community to increase adoption, and the i...
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of So...
Monitoring of Docker environments is challenging. Why? Because each container typically runs a single process, has its own environment, utilizes virtual networks, or has various methods of managing storage. Traditional monitoring solutions take metrics from each server and applications they run. These servers and applications running on them are typically very static, with very long uptimes. Docker deployments are different: a set of containers may run many applications, all sharing the resource...
SYS-CON Events announced today that eCube Systems, the leading provider of modern development tools and best practices for Continuous Integration on OpenVMS, will exhibit at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. eCube Systems offers a family of middleware products and development tools that maximize return on technology investment by leveraging existing technical equity to meet evolving business needs. ...
DevOps is a term that comes full of controversy. A lot of people are on the bandwagon, while others are waiting for the term to jump the shark, and eventually go back to business as usual. Regardless of where you are along the specturm of loving or hating the term DevOps, one thing is certain. More and more people are using it to describe a system administrator who uses scripts, or tools like, Chef, Puppet or Ansible, in order to provision infrastructure. There is also usually an expectation of...
JetBlue Airways uses virtual environments to reduce software development costs, centralize performance testing, and create a climate for continuous integration and real-time monitoring of mobile applications. The next BriefingsDirect Voice of the Customer performance engineering case study discussion examines how JetBlue Airways in New York uses virtual environments to reduce software development costs, centralize performance testing, and create a climate for continuous integration and real-tim...
The general concepts of DevOps have played a central role advancing the modern software delivery industry. With the library of DevOps best practices, tips and guides expanding quickly, it can be difficult to track down the best and most accurate resources and information. In order to help the software development community, and to further our own learning, we reached out to leading industry analysts and asked them about an increasingly popular tenet of a DevOps transformation: collaboration.
In case you haven’t heard, the new hotness in app architectures is serverless. Mainly restricted to cloud environments (Amazon Lambda, Google Cloud Functions, Microsoft Azure Functions) the general concept is that you don’t have to worry about anything but the small snippets of code (functions) you write to do something when something happens. That’s an event-driven model, by the way, that should be very familiar to anyone who has taken advantage of a programmable proxy to do app or API routing ...